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Abstract. Bousquet-Mélou and Rechnitzer have introduced the class of multi-directed animals, as an
extension of the classical 2D directed animals. They gave an explicit expression for their generating
function. In the case of directed animals, the corresponding generating function is algebraic and various
“combinatorial explanations” (bijective proofs) have been given, in particular using the so-called model
of heaps of dimers. Although the generating function for multi-directed animals is not algebraic, even
worst not D-finite, we give a bijective proof of Bousquet-Mélou and Rechnitzer’s formula, introducing the
“Nordic decomposition” of a connected heap of dimers. One possible interest of this bijective proof is in
relation with 2D Lorentzian quantum gravity. Ambjørn, Loll, Di Francesco, Guitter and Kristjansen have
introduced and studied the notion of Lorentzian triangulations. There exist correspondences between these
triangulations, connected heaps of dimers and multi-directed animals.

1. Introduction: directed animals and heaps of dimers
The enumeration of animals (or polyominoes) is a longstanding problem in combinatorics and in
statistical physics. These objects have been intensively studied for more than 40 years, both by physicists
and combinatorists. Some asymptotic results are known for the general case, see for example numerical
studies by Jensen and Guttmann [16]. Exact enumerative results have been given for some subclasses
of polyominoes defined essentially by some conditions of directedness or convexity. A directed animal
on the square (resp. triangular) lattice is a set of points (or cells) such that any cell of the animal can
be reached from a fixed cell, called the source, by a path that only visits cells of the animal, and such
that each elementary step is going North or East (resp. North, East or North-East) to the next neighbour.
Directed animals on the square and on the triangular lattice are shown on Figure 1.

Let an and bn be the number of directed animals having n cells, drawn on respectively the square and
triangular lattice. Let PS(t) and PT (t) be the corresponding generating functions, that is

PS(t) =
∑
n≥1

antn ; PT (t) =
∑
n≥1

bntn. (1.1)
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(a) square lattice (b) triangular lattice

Figure 1. Directed animal.

Various solutions for the enumeration of directed animals have been given, Dhar [9], [10], Hakim,
Nadal [13] (following Nadal, Derrida, Vannimenus [17]), Viennot [20], Gouyou-Beauchamps, Viennot
[12], Barcucci and al [2], Bétréma, Penaud [3], [4], Penaud [18], Shapiro [19]. The generating functions
PS(t) and PT (t) are algebraic generating functions and simple formulae can be given, related to Catalan
and Motzkin numbers:

PS(t) =
1
2

(√
1 + t

1 − 3t
− 1

)
; PT (t) =

1
2

(
1√

1 − 4t
− 1

)
. (1.2)

Some solutions are based on the combinatorial theory of heaps of pieces introduced by the author in
[21]. In this paper we will only use heaps of dimers on the discrete line of integers Z. We shall recall
here intuitively the definitions and the basic properties we need. Intuitively, a heap of dimers is obtained
by dropping a finite number of dimers towards an horizontal axis. Each dimer connects two consecutive
vertical lines, and fall until it touches the horizontal axis or another dimer. We can imagine that each
dimer is a solid piece having thickness of one unit, so that dimers are lying at heights which are positive
integers. See Figure 2.
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Figure 2. A heap of dimers.

For more precise or mathematical definitions the reader may consult Viennot [20], [21] where the
general theory is introduced. Heaps of pieces form a kind of geometric and combinatorial model,
interpreting the so-called commutation monoids introduced by Cartier and Foata in [8]. See also
Bousquet-Mélou and Viennot [6] for another definition of heaps of pieces.

Heaps of dimers correspond to monoids generated by the variables ai, i ∈ Z, with the following
commutation rules
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aiaj = ajai for | i − j |≥ 2 , i, j ∈ Z. (1.3)

A maximal dimer is a dimer that can be removed from the heap by sliding it upwards without bumping
other dimers. A pyramid is a heap having only one maximal dimer. A half-pyramid is a pyramid such
that the maximal dimer lies in the leftmost non empty column.

Push operator
This operator will appear several times in this paper. Take an arbitrary heap H and a particular piece α of
H . Imagine we take this piece α and push it down. In the process, α may bump into other dimers, which
may bump into other dimers, etc ... Intuitively, a whole pyramid P (α), with α as maximal piece will be
extracted from the heap H . What will remain will be another heap G(α). We have decomposed the heap
H into a heap G and a pyramid P . In fact, for the reader more familiar with heaps of pieces theory, we
can write H as a non-ambiguous product P

⊗
G, where the product means intuitively to “put the heap

G above the heap P ”. This product is in fact isomorphic to the product in the associated commutation
monoid, see [21]. The important fact to remember is that the generating function for the heap H will be
the product of the generating function corresponding to G and P . Here, the generating function of heaps
will be the generating function corresponding to the enumeration of heaps according to the number of
dimers.

Now, as introduced in [20] or [21], there exist a simple bijection between directed animals on
triangular lattice and pyramids of dimers (up to translation), as shown on Figure 3. We rotate the directed
animal A so that the source point is upwards and the North-East direction becomes the South direction.
We replace each cell of the animal by a dimer and we let them fall as shown on Figure 3. We get a
pyramid P = V (A). The map V is a bijection. In the case of square lattice animals, the map V gives
a bijection between animals on a square lattice and strict pyramids of dimers. There are pyramids such
that no two dimers are just one over another. Note that this local configuration in a heap corresponds to
a North-East elementary step in the directed animal.

We resume the simple solution of [4] or [18] explaining the algebraic nature of PS and PT . It is
simpler to explain it in the case of a triangular lattice. Let P be a pyramid. If P is not a half-pyramid,
then we apply the push operator to the maximal dimer in the (non empty) column just at the left of
the column containing the maximal piece of P , (see Figure 4). Similarly, any half-pyramid can be
decomposed into product of one or two half-pyramids, as shown on Figure 4.

From these decompositions, we get the following algebraic system of equations for the generating
functions P (t) and Q(t) of pyramids and half-pyramids on a triangular lattice.{

P (t) = Q(t) + P (t)Q(t),

Q(t) = t + 2tQ(t) + tQ2(t).
(1.4)

In the case of square lattice, analogous decompositions to Figure 4 can be made (see [7]) and algebraic
equations can be deduced. Another simple argument is to go from a strict heap of dimers to a general
heap by substituting to a single dimer a pile of dimers as shown on Figure 5.

When applied to pyramid of half-pyramid, this substitution implies the following relation between
the corresponding generating functions:

PT (t) = PS

(
t

1 − t

)
; QT (t) = QS

(
t

1 − t

)
. (1.5)

From equations (1.4) and (1.5) one deduces the formulae (1.2).
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(a)

(b)

Figure 3. Bijection between directed animals and pyramids of dimers (a) square lattice and strict pyramids (b) triangular
lattice.
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Figure 4. Factorisation of pyramid and half-pyramids.

2. Multi-directed animals
A heap of dimers is called connected when no empty column occurs between the leftmost and rightmost
non empty columns of the heap. In particular the orthogonal projection of a heap of dimers is a connected
segment of Z. An example is displayed on Figure 6. Any heap of dimers can be decomposed into a
sequence of connected heaps, called its connected components, separated by empty columns. See Figure
7.

The transformation V described in section 1 can be done for every animal on a square or triangular
lattice, as shown on Figure 6. Recall that an animal is a connected set of points of the square (or
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.

Figure 5. From strict heaps to general heaps.

triangular) lattice, that is, such that every pair of points (or cell) can be connected by a path formed by
points in the animal and with elementary steps going to a next neighbour point. The transformation V is
not bijective. The result V (A), for any animal is always a connected heap.

Figure 6. From animals to connected heaps of dimers.

Figure 7. Connected components of a heap of dimers.

Bousquet-Mélou and Rechnitzer have introduced in [7] the class of multi-directed animals so that
the map V becomes a bijection between connected heap of dimers and that class of animals. For H a
connected heap, let m1, · · · , mk be the maximal pieces of H , ordered from left to right. We successively
apply the push operator to the pieces m1, · · · , mk, giving rise to a sequence of pyramids P1, · · · , Pk.
Each pyramids Pi is in bijection via the map V with a directed animal Ai. Then we glue successively the
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directed animals A1, · · · , Ak, by putting each animal Ai “far above” the previous animals A1, · · · , Ai−1

already glued, and sliding it down until it connects with the previous glued animals. This process is
shown on Figure 8. The resulting set of points is called a multi-directed animal.

P 

P 

P 

  A 

A

A

1

1

2

3

2

3

Figure 8. From connected heaps to multi-directed animals.

It would also be possible to defined multi-directed animals on a square lattice, in bijection with
connected strict heaps of dimers, see [7].

One of the main result of [7] is an explicit expression for the generating function of multi-directed
animals (enumerated by number of cells), or equivalently of connected heaps of dimers (enumerated by
number of dimers, and up to an horizontal translation).

Proposition 1. Let Q denote the generating function for general (resp. strict) half-pyramids. Then
the generating function C for general (resp. strict) connected heaps of dimers is given by the following
relation

C =
Q

(1 − Q)
(
1 − ∑

k≥1
Qk+1

1−Qk(1+Q)

) . (2.1)
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As shown in [7], this series is not algebraic, nor even D-finite. Recall that a power series is D-finite
iff its coefficients an satisfies a linear recurrence relation with polynomial coefficients in n. The purpose
of this paper is to give a bijective proof of identity (2.1).

3. Preliminaries about heaps
We have an inversion lemma, giving the generating function of heaps of pieces in general, see [8] and
[21]. In the case of heaps of dimers on a segment of length n, this lemma can be written in the following
way.

Let Un(t) be the nth Tchebychef polynomial of the second kind, that is the polynomial defined by the
relation sin(n + 1)θ = (sinθ)Un(cosθ).

We denote by Fn(t2) the reciprocal of the polynomial Un(t/2). These polynomials (sometimes called
Fibonacci polynomials) can also be defined by the classical three terms recurrence relation:

Fn+1(t) = Fn(t) − tFn−1(t) for n ≥ 1 with F0(t) = F1(t) = 1. (3.1)

These Fibonacci polynomials can be interpreted combinatorialy as the (alternating in sign) generat-
ing polynomial for trivial heaps of dimers on a segment, that is heaps where all the pieces are at level
0. These are classical combinatorial objects also known as matchings. The Fibonacci polynomial is also
the reciprocal (up to change of t2 into t) of the so-called matching polynomial of the segment graph. An
example is displayed on Figure 9.

1 

−t

−t

−t
F (t) = 1 − 3t + t

+t²

2

Figure 9. The Fibonacci polynomial F4(t) and trivial heaps of dimers on a segment.

Proposition 2. Inversion lemma. The generating function for heaps of dimers (counted according to
the number of dimers) on a segment of n points (i.e. heaps of dimers in a bounded strip of width n−1) is
the inverse of the alternating generating function for trivial heaps of dimers on this segment, i.e. 1/Fn(t).

In this paper we will also need to introduce the notion of left width of a pyramid and its related
generating function.

Let P be a pyramid of dimers. The number of non empty columns at the left of the column containing
the maximal piece of P is called the left width of the pyramid. Let Pk be the generating function of
pyramids with left width k ≥ 0. The power series is given by the following simple formula

Pk = Qk+1. (3.2)

Figure 10 displays the idea for a bijective proof of this formula. If k = 0, then the pyramid P is
reduced to a single half-pyramid. For k ≥ 1, let m1, · · · , mk be the maximal pieces in the k columns
located at the left of the column containing the maximal piece of P (numbered from left to right). We
apply successively the push operator to m1, · · · , mk, obtaining a sequence of half-pyramids. At the
end remains a single half-pyramid. The pyramid P has been decomposed into a product of (k + 1)
half-pyramids and formula (3.2) is proven.
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Q 

Q 

Q 

Left width k

P = Q
k+1

Figure 10. Decomposition of pyramids into half-pyramids.

4. The Nordic decomposition of a connected heap of dimers
The “Nordic decomposition” is a recursive decomposition of a connected heap of dimers. The name
“Nordic” comes from the fact that we found this decomposition during our stay in Iceland and Sweden,
beginning at the 24th Nordic (and first Franco-Nordic) meeting in Reykjavik and then during our stay at
the Mittag-Leffler Institute in January and Februry 2005.

Let H be a non-empty connected heap of dimers. Let α be te rightmost maximal dimer. The push
operator factorize the heap H into a product P

⊗
H ′, where H ′ is a heap and P is a pyramid having α

as maximal piece. The heap H ′ could be empty. In that case H is reduced the pyramid P . If H ′ is not
empty, we continue in the following way.

The heap H ′ is not necessarily connected, but can be factorized into its connected components
H ′

1, · · · , H ′
r (written from left to right). Let G = H ′

1 be its leftmost connected component, and let J
be the heap formed by the remaining connected components H ′

2, · · · , H ′
r. Between the rightmost non

empty column of G and the column containing the dimer α, there exist at least k ≥ 1 columns, numbered
from left to right C1, · · · , Ck. If this was not the case, we would have r = 1, G = H ′ and there would
be some dimers of G inside the column just at the left of the column containing the dimer α, and above
this dimer α. This would contredict the fact that α is a maximal piece of H .

It may be possible that C1 = Ck (this is the case k = 1). The heap J (may be empty) is located
between the columns C1 and Ck. It is an arbitrary heap of dimers inside a strip of width k − 2.

Inside the column C1, there are some dimers of the pyramid P (if this was not the case the heap
H = P

⊗
G

⊗
J would not be connected). Let β be the topmost dimer of the pyramid P inside the

column C1. Again, applying the push operator on the dimer β, we can decompose the pyramid P into a
product of two pyramids P = P ′ ⊗ P ′′. The pyramid P ′ has β as maximal piece. The pyramid P ′′ has
α as maximal piece and has a leftwidth equal to k − 1.

To resume the situation, if the heap H is not reduced to a single pyramid P , we have splitted the
connected heap H into four disjoint heaps: a connected heap G, a heap J on a segment of length k − 2
(empty if k = 1 or 2), a pyramid P ′ and another pyramid P ′′ of left width k − 1. Each of these heaps is
defined up to a translation (parallel to the horizontal axis).

Conversely, from the knowledge of the quartet G, J , P ′, P ′′ where the heaps are defined up to
an horizontal translation, we can reconstruct the heap H in the following way: first the pyramid P is
obtained by taking the product of the pyramid P ′ with a pyramid P ′′ translated such that the maximal
piece β of the pyramid P ′ is in a column just at the left of the leftmost non empty column of P ′′. Then,
we put above the heap G, translated such that its rightmost non empty column is located just at the left
of the column containing the maximal piece β of the pyramid P ′. Finally we put above all this the heap
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Figure 11. The Nordic decomposition of a connected heap of dimers.

J , translated such the segment of length k − 2 on which J is defined, is the segment corresponding to
the points located at distance 1, 2, · · · , k − 2 and at the left of the maximal piece α of the pyramid P ′′.

The Nordic decomposition of a connected heap into four pieces leads to the following identity for the
generating functions

C =
Q

1 − Q
+ C

∑
k≥1

Q

1 − Q
× Qk × 1

Fk−1
. (4.1)

The generating function for the pyramid P ′ is Q/(1−Q), the generating function of the pyramid P ′′
with left width k − 1 is Qk, while the generating function for the part J is 1/Fk−1(t).

From (4.1) we deduce the following expression for the generating function for connected heaps of
dimers

C =
Q

(1 − Q)
(
1 − ∑

k≥1
Qk+1

(1−Q)Fk−1

) . (4.2)

This is not exactly the formula given by Bousquet-Mélou and Rechnitzer, but the Fibonacci
polynomials can be expressed in term of the generating function Q(t) for Catalan numbers (or half-
pyramids) in the following way

Fn(t) =
(1 − Qn+1)

(1 − Q)(1 + Q)n
. (4.3)

Replacing Fk−1(t) in identity (4.2) gives the following identity
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C =
Q

(1 − Q)
(
1 − ∑

k≥1
Qk+1(1+Q)k−1

(1−Qk)

) . (4.4)

which is equivalent to identity (2.1), as shown in [7].
The same Nordic decomposition would applies for strict connected heaps of dimers. The

corresponding identities should be replaced with generating functions for strict heaps. There would
be an analogue for the generating function 1/F (t), with an analogue for identity (4.3), which can be
proved bijectively using the same proof as below in section 5.

5. Fibonacci polynomials and Catalan numbers
For completeness, we give a bijective proof of the relation (4.3) relating Fibonacci polynomials and
Catalan numbers. First we write the identity (4.3) in the following form

(1 + Q)n =
1

Fn(t)
× (1 + Q + · · · + Qn), for every n ≥ 1. (5.1)

We claim that both sides of identity (5.1) are the generating function for heaps of dimers H on the
non negative integers subject to the condition that the maximal pieces of H are located in the first n
columns over the horizontal axis. In other words, the projection of these maximal dimers are contained
in the segment [0, n].
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Figure 12. Bijective proof of (5.1).

The left handside of identity (5.1) is obtained by reading from left to right the first n columns over
the non negative integers. Some columns may not contain any dimers of H , but we can always apply the
push operator for each non-empty column. We thus decompose the heap H into a product of n (possibly
empty) half-pyramids. This gives the interpretation of the left handside of (5.1).

In order to interpret the right handside, we apply the push operator on the maximal piece of the
column (n − 1, n) (if the column is non empty). We get a (possibly empty) pyramid having left width
≤ n. The heap H is thus factorized into this pyramid and a heap on the segment [0, n− 1]. Applying the
inversion lemma, we get the left handside of identity (5.1).

As mentioned at the end of the previous section, analogue proof would applies for strict heaps, and
thus we obtain bijectively identity (2.1) for square lattice multi-directed animals, i.e. connected heaps of
dimers.
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6. Relation with Lorentzian triangulations
One possible interest of this bijective proof is in relation with 2D Lorentzian quantum gravity.

Lorentzian triangulations have been introduced by Ambjørn and Loll in [1] as a model for 2D
quantum gravity, and further study by Di Francesco, Guitter and Kristjansen [11]. A (general) Lorentzian
triangulation is a triangulation on the plane, where all the vertices of the triangles relies on parallel
horizontal lines (corresponding to time T = 0, 1, · · ·). Between two lines, we have a connected sequence
of triangles, pointing upwards or downwards. See Figure 13 (a). Physicists have considered some
border conditions. In [1], the first triangle in each row is pointing upwards. In the paper [11], the
triangulations satisfy two border conditions: the first (resp. last) triangle in each row is pointing upwards
(resp. downwards). See Figure 13 (b) and (c).
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Figure 13. Lorentzian triangulations.

Computing some physical quantities, such as the so-called “loop propagator from one geometry to
another” are equivalent to the combinatorial problems of enumerating these Lorentzian triangulations
according to various parameters such as the number of triangles, the number of rows, the number of
points on the lower and upper constant-time lines. In [11], an extra parameter “curvature” is added.
Explicit expressions are given in [1] for such generating functions with the first border condition and
in [11] with the two border conditions and involving the curvature parameter. The general case did not
seems to have been studied in the physics literature. In fact, general 2D Lorentzian triangulations are
nothing but connected heaps of dimers ...

A bijection can be given (see [11]). Let H be a connected heaps of dimers. Replace each dimer by
a pair of triangles as shown in Figure 14. Then glue together in each column these triangles. Deleting
the triangles of the first and last column gives rise to a Lorentzian triangulation (rotated by 90◦). In fact
it is not an arbitrary Lorentzian triangulation: it is a triangulation with no articulation point, that is each
constant-time line contains at least two vertices of some triangle.

Conversely, start from such a triangulation with no articulation point. Rotate 90◦. Add an extra
sequence of triangles on both sides so that the first and last constant-time line contains only one vertices.
Take the dual map (in the language of planar graphs). From this dual map can be extracted edges leading
to a heap of dimers after some deformation, as shown on Figure 14.

In [1], the border condition is equivalent to say that the heap is a half-pyramid. The corresponding
generating function is thus related to the Catalan generating function. Complete bijective proofs can be
constructed for the formulae involved in [1] and [11], see James [14] and James, Viennot [15].
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Figure 14. Bijection between connected heaps of dimers and Lorentzian triangulations (with no articulation point).

Note that a general Lorentzian triangulation can be uniquely decomposed as a sequence of Lorentzian
triangulations without articulations points. Thus the formula of Bousquet-Mélou and Rechnitzer solves
the problem of the enumeration of general Lorentzian triangulations counted by the number of triangles
(in fact up to the slight modification that some extra triangles have been added to both sides of the
configuration). The formula shows that 2D Lorentzian gravity in the general case is not in the same
universality class than the model considered in [1] and [11] with the above border conditions.

A formula for the four variables generating function is in fact given in Bousquet-Mélou and
Rechnitzer [7] (up to some changes of variables), different bijections are involved. Nevertheless, some
open problems remain for these general 2D Lorentzian triangulations, such as the enumeration problem
with the curvature parameter. It is our hope that the Nordic decomposition of a connected heap of dimers
presented here will be useful for approaching these open problems.
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