Combinatorics and Physics

Chapter O Introduction Overview of the course (part 3)

IIT-Madras 14 January 2015

Xavier Viennot CNRS, LaBRI, Bordeaux

Heaps of pieces and commutations

3 basic lemma
•
$$(heaps) = \frac{1}{(trivial)}$$

• $log(heaps) = pyramids$
• $path = heap$

interactions with physics

- loop-erased walks

- the directed animal model and hard particule gas model

- q-Bessel functions in statistical physics: staircase polygons, SOS model, ...

- Lorentzian triangulations in 2D quantum gravity

directed animals

an ~ µ n directed animals $l_n \sim n^2$ average width $L_n \sim n^{\vee_n}$ average. length . .

.

partition function $Z_{p}(t) = \sum_{n \neq 0} a_{n,p} t^{n}$ $Z(t) = \lim_{x \to \infty} \left(Z_{y}(t) \right)^{1}$ thermodynamic limit

$$R(q) = \prod_{n \geq 0} \frac{(4 - q^{n+1})(4 - q^{n+4})}{(4 - q^{n+4})(4 - q^{n+4})} = \frac{R_{II}}{R_{II}}$$

$$t = -q \left[R(q) \right]^{S}$$

$$f(q) = \prod_{n \geq 0} \frac{(1 - q^{n+2})(1 - q^{n+3})^{2}(1 - q^{n+4})(1 - q^{n+2})^{2}(1 - q^{n+3})^{2}}{(1 - q^{n+3})^{2}(1 - q^{n+4})(1 - q^{n+2})^{2}(1 - q^{n+3})^{2}}$$

$$Z(t) = Y(q(t))$$

 $(-1)^n E^n q^n q^{\binom{n}{2}}$ $(1-q)\cdots(1-q^n)(1-uq)\cdots(1-uq^n)$

2D Lorentzian quantum gravity

relativité générale

mécanique quantique

- J. Ambjørn, R. Loll, "Non-perturbative Lonentzian quantum gravity and topology change", Nucl. Phys. B536 (1998) 407-434 arXiv: hep-th/9805108

P. Di Francesco, E. Guilter, C. Kristjansen, Integrable 2D Grentzian gravity and random welks", Nucl. Phys. B 567 (2000) 515-553 auXiv: hep-th/9907084

quantum gravity

P. Di Francesco

J.Ambjørn

gravitation quatique Lorentzienne 2D

R. Loll

E.Guitter

C. Kristjansen

temps la espace Path integral amplitude for the propagation from geometry ly to la

Catalan number $C_n = \frac{1}{(n+1)} \binom{2n}{n}$

representation of Lie algebras with full heaps

R. Green

totally commutative elements in Coxeter groups - introduction to enumerative and bijective combinatorics

 non-crossing paths, tilings, determinants and Young tableaux. The LGV Lemma.

- introduction to the theory of heaps of pieces: the 3 basics lemma

heaps of pieces and statistical mechanics: directed animals, gas models, q-Bessel functions in physics
heaps of pieces and 2D Lorentzian quantum gravity