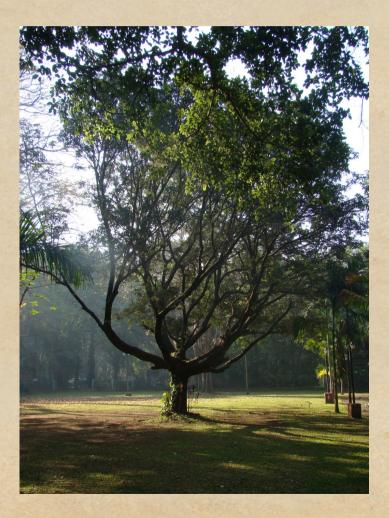
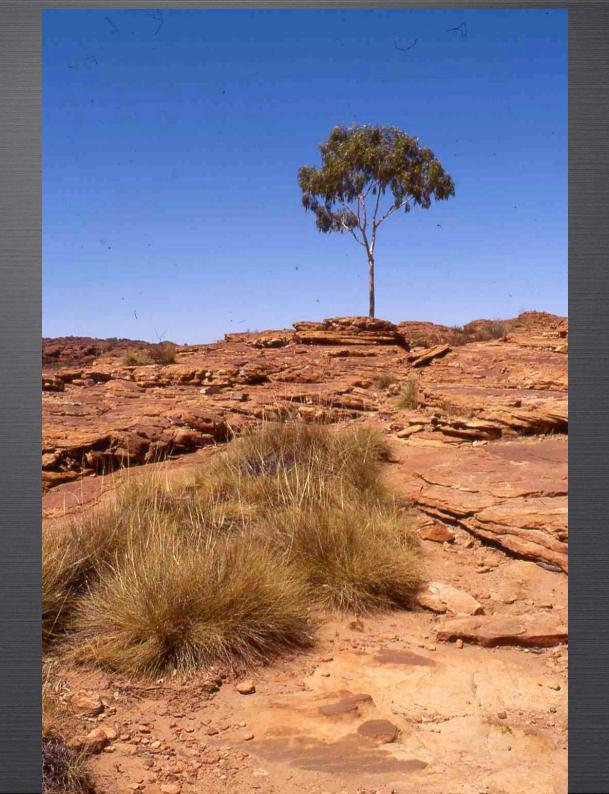
Trees in Various Sciences

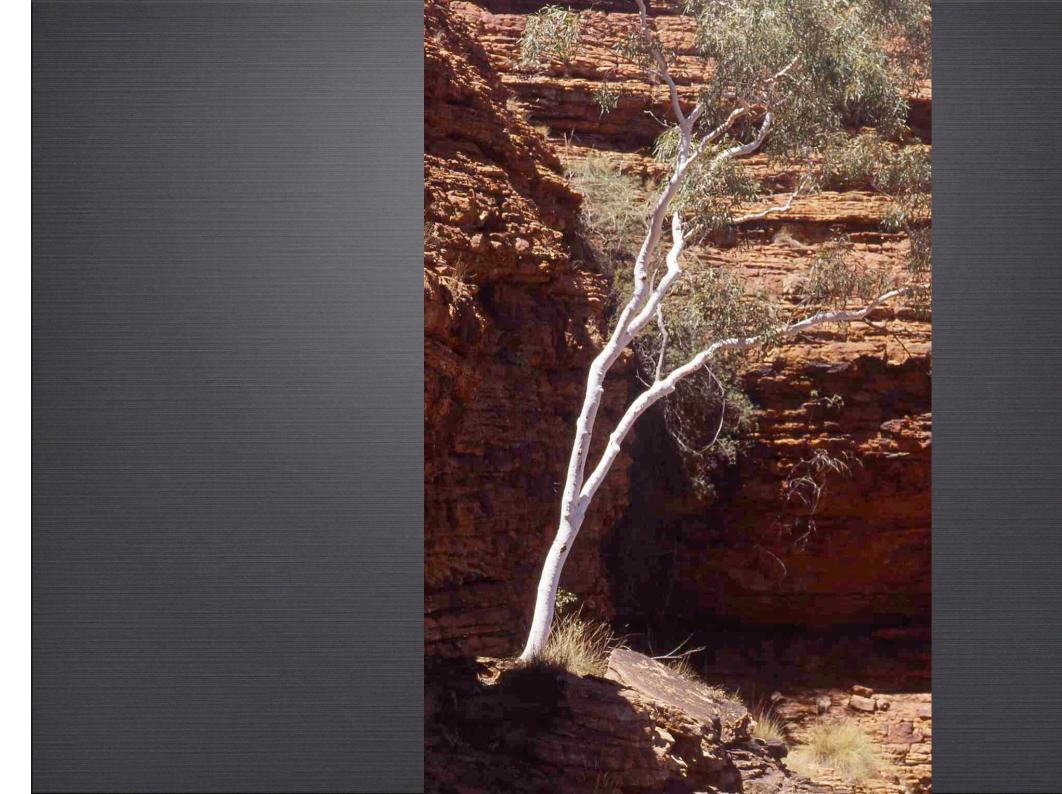
Colloquíum Institute IIT Bombay, Powaí, Mumbaí January 19, 2013

Xavier Viennot CNRS, LaBRI, Bordeaux visiting professor IITB

Trees in nature ... trees everywhere







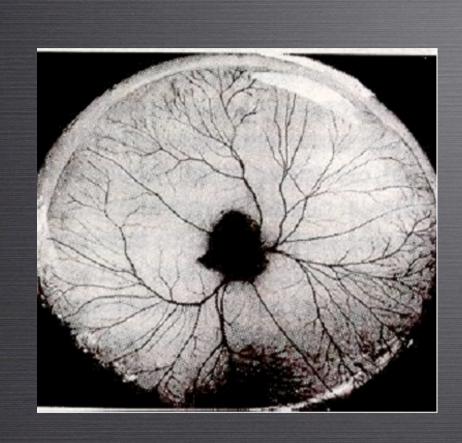
ELECTRICAL DISCHARGE

ELECTROLYSIS DEPOSITS

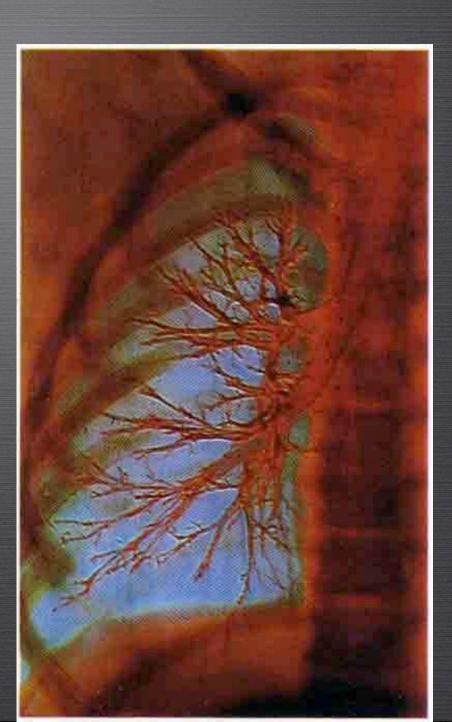
VINCENT FLEURY

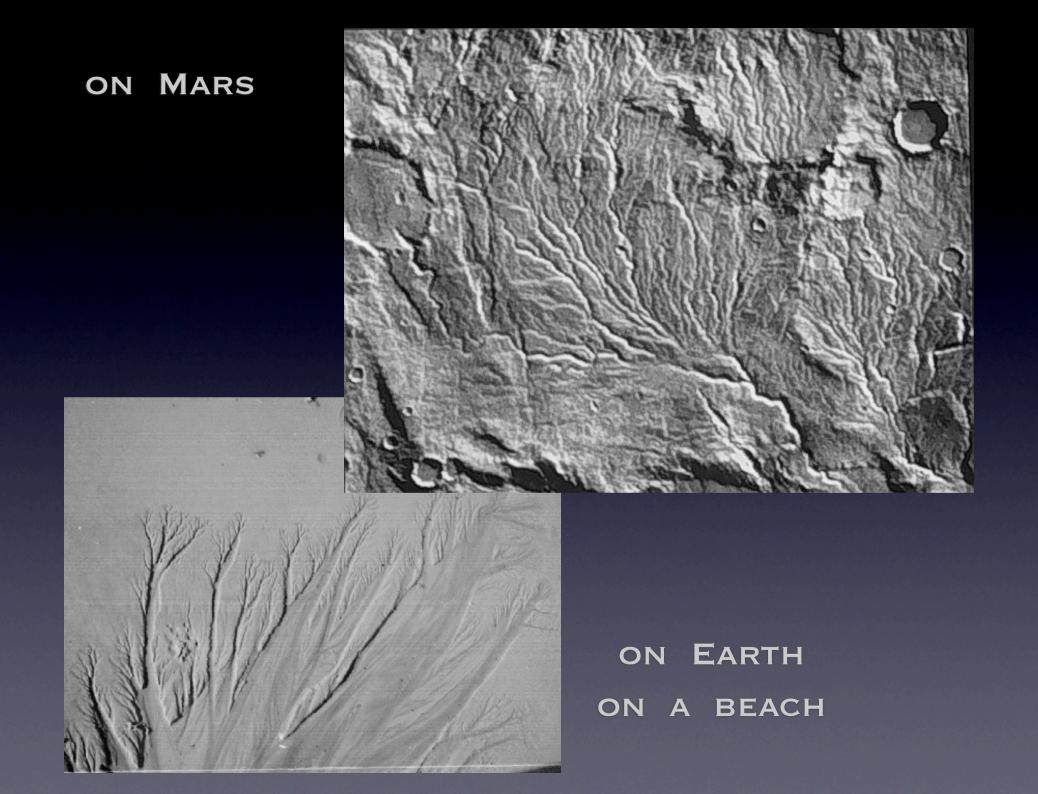
VISCOUS FINGERING

INJECTING OIL BETWEEN TWO PLATES



EGG



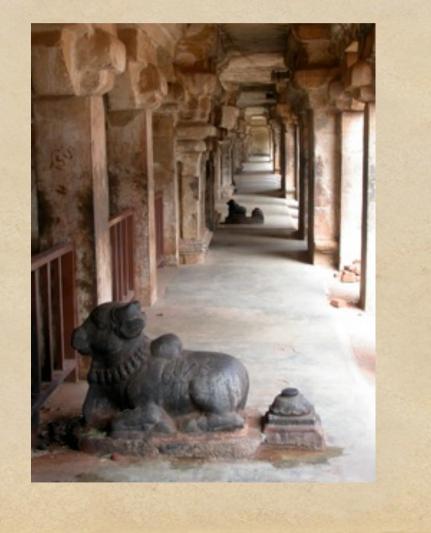


TREES BRANCHING STRUCTURES EVERYWHERE

THE TREE OF KNOWLEDGE

IIT BOMBAY, POWAI, MUMBAI

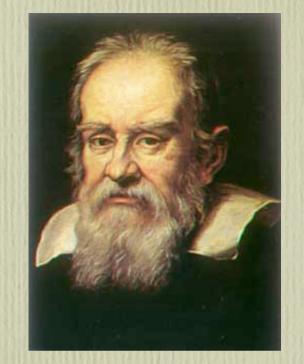
Trees in the stars ?



The infinitely large ..

The stars, the planets, the galaxies, the universe, its birth and history, space, time, mater, ...

understanding the universe with mathematics

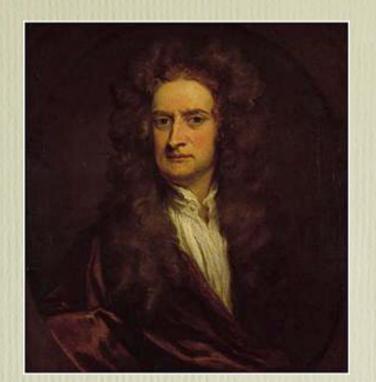


Galileo Galilei 1564-1642

classical geometry

Johannes Kepler 1571 - 1630

classical mechanics

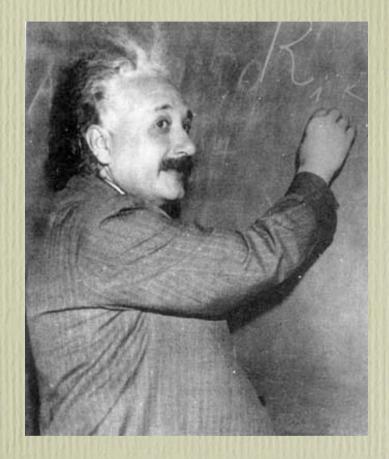


Isaac Newton 1643-1727

euclidian geometry

OANNIS KEPPLERI

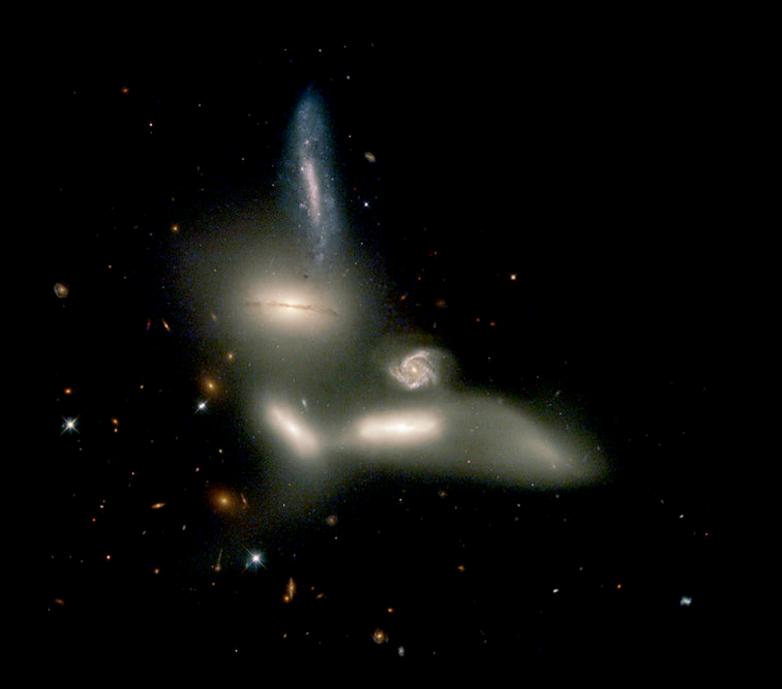
TTHEAS BERSEGGERAS



Relativity theory restricted general

gravitation

Albert Einstein 1879-1955



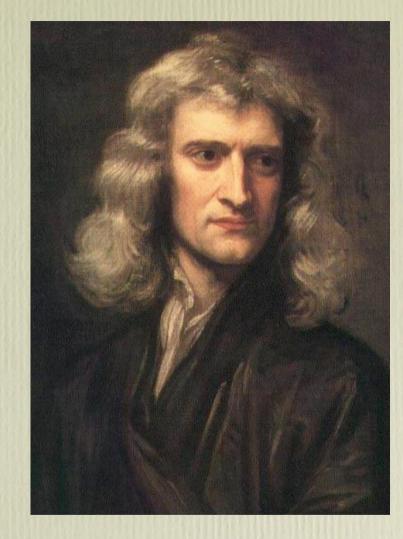
Trees in the particules of light ?

collégiale Notre-Dame Vernon

The infinity small ...

the atoms, the electrons the particles of mater, of light, the photons,

Christian Huygens 1629-1695

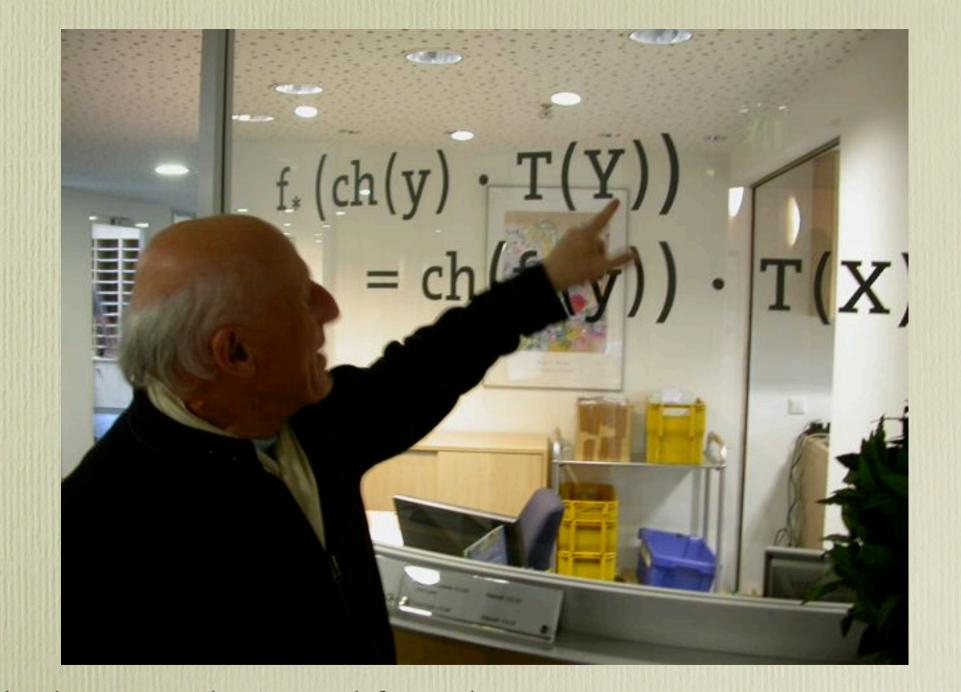


Isaac Newton 1643-1727

the light:

vibration ? or particles of mater?

If you are lost in the forest of mathematics, just relax and look at the pictures



look at a mathematical formula as some abstract art

Rogers - Ramanyjan identities

$$R_{I} = \sum_{n \ge 0} \frac{q^{n^{2}}}{(1-q)(1-q^{2})\cdots(1-q^{n})} = \prod_{\substack{i=1, i \\ mod \le}} \frac{1}{(1-q^{i})}$$

 $R_{I} = \sum_{n \ge 0} \frac{q^{n^{2}+n}}{(1-q)(1-q^{2})\cdots(1-q^{n})} = \prod_{\substack{i=1, i \\ mod \le}} \frac{1}{(1-q^{i})}$
 $mod \le 1$

Srinivasan Ramanujan (1887-1920)

The langage of mathematics is like the langage used to write musics.

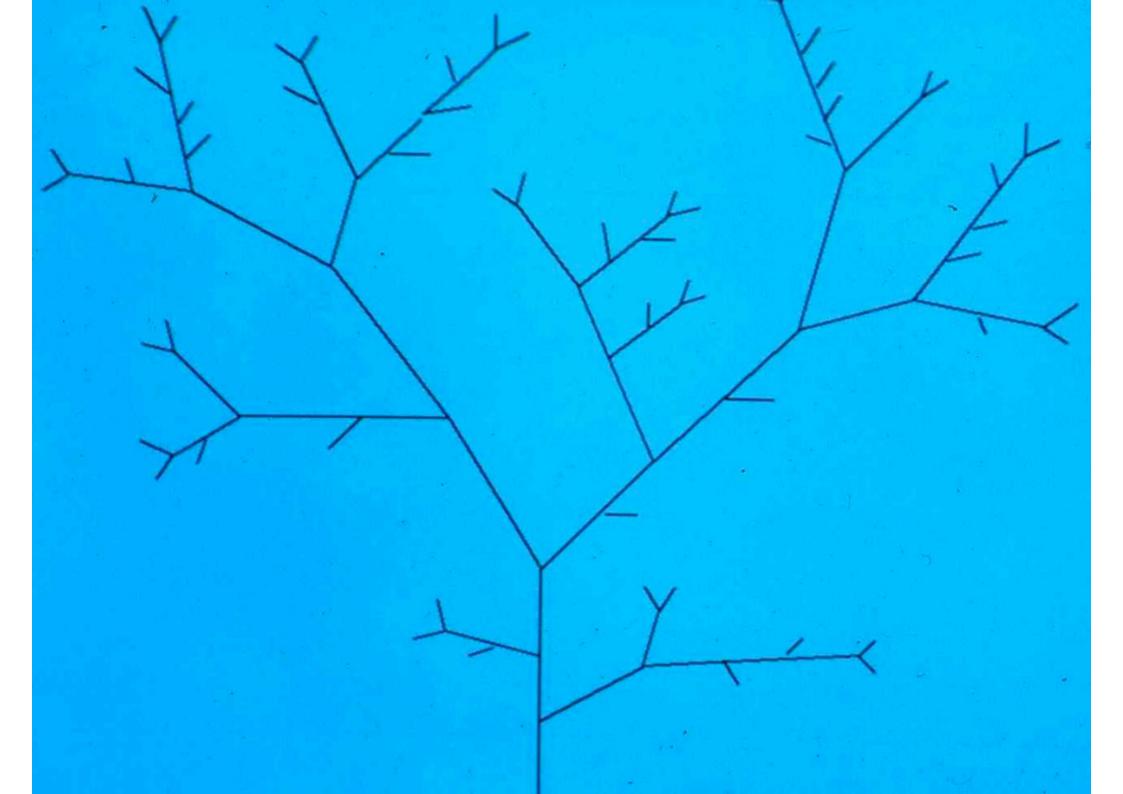
But mathematics are musics !

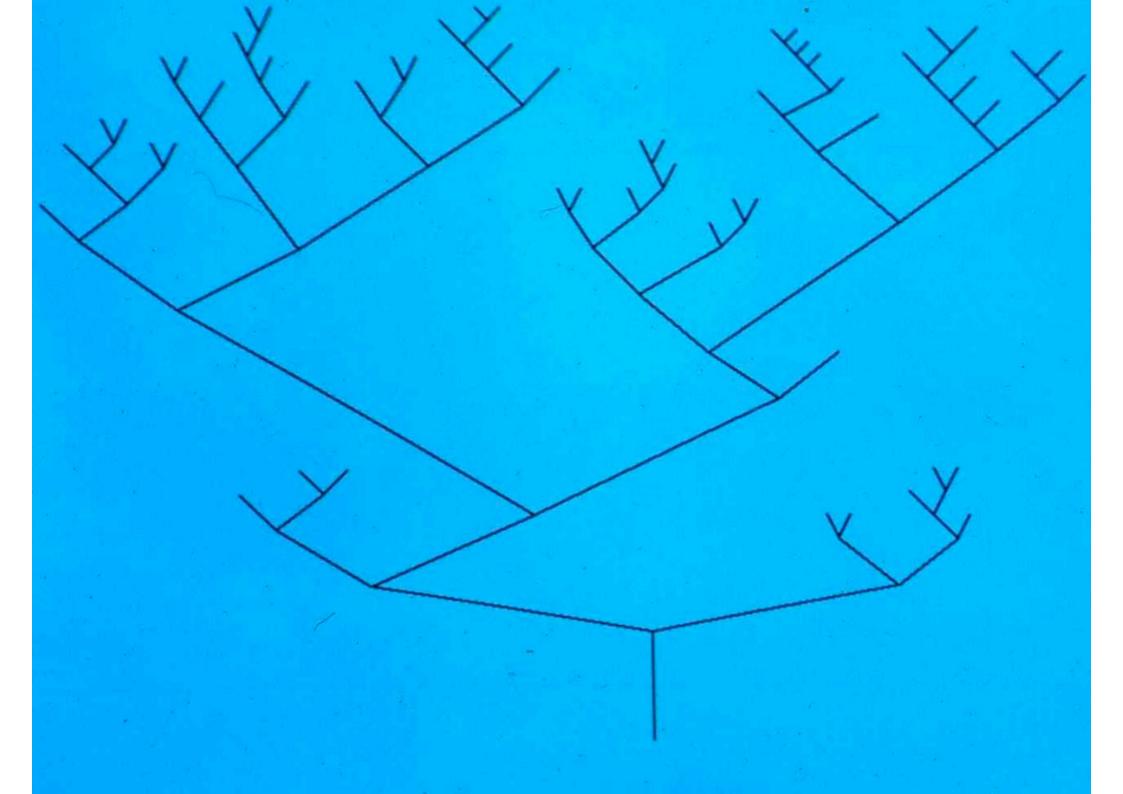
Usually, in school you only learn how to write mathematics, but it is difficult to hear the beauty of mathematics.

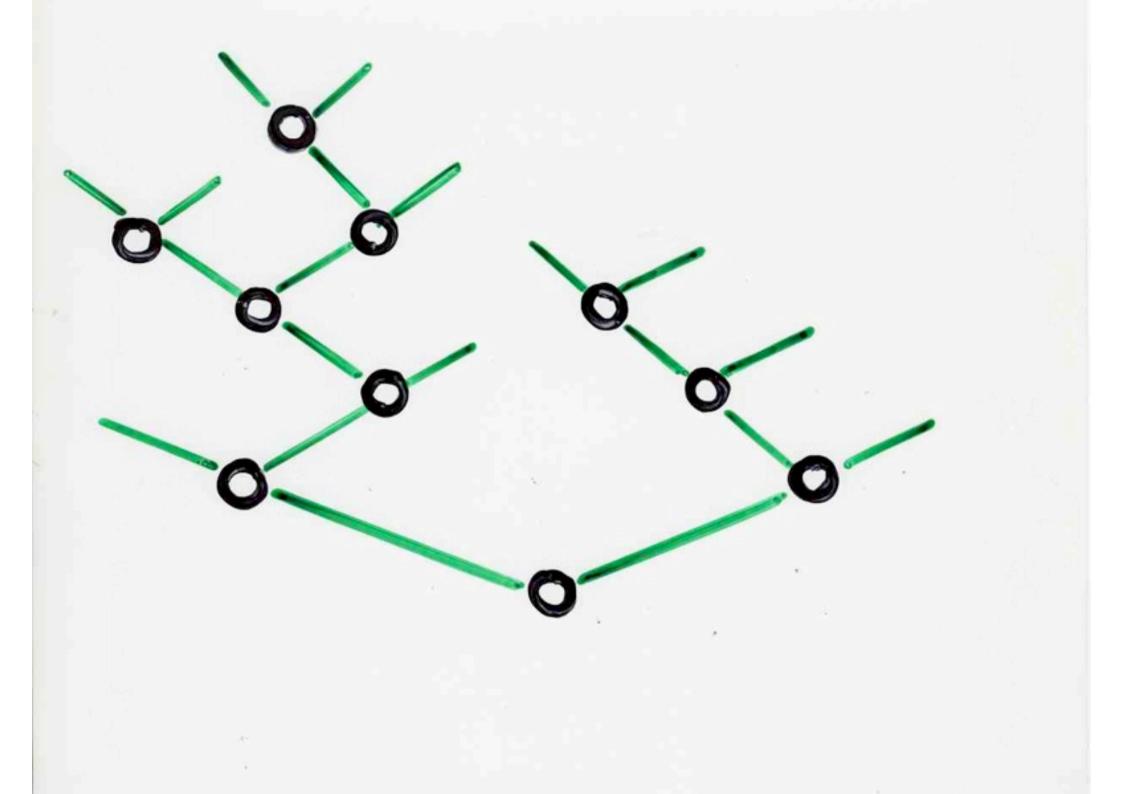
An example of mathematical object: binary trees or mathematical trees

> giving an abstraction of the trees in the world around us

From trees in nature... to mathematical trees

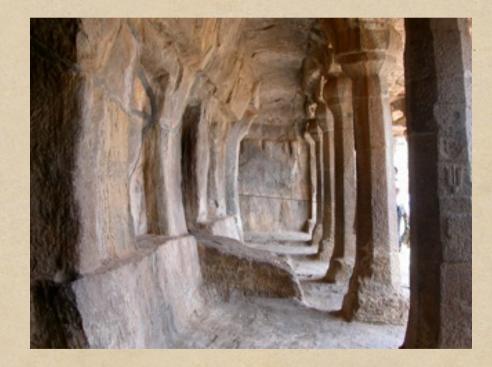




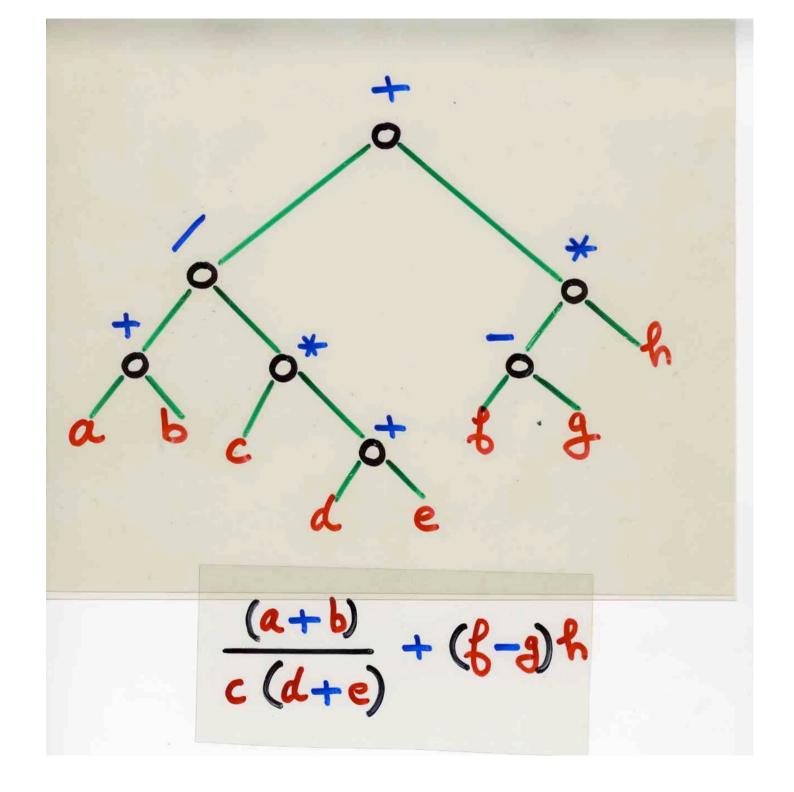


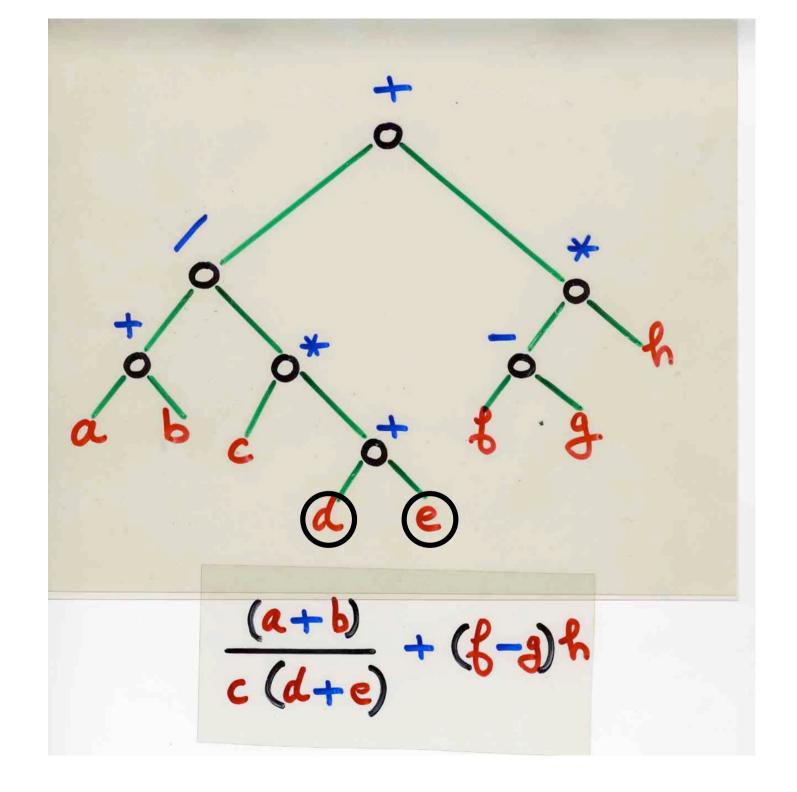
Trees in computers ...

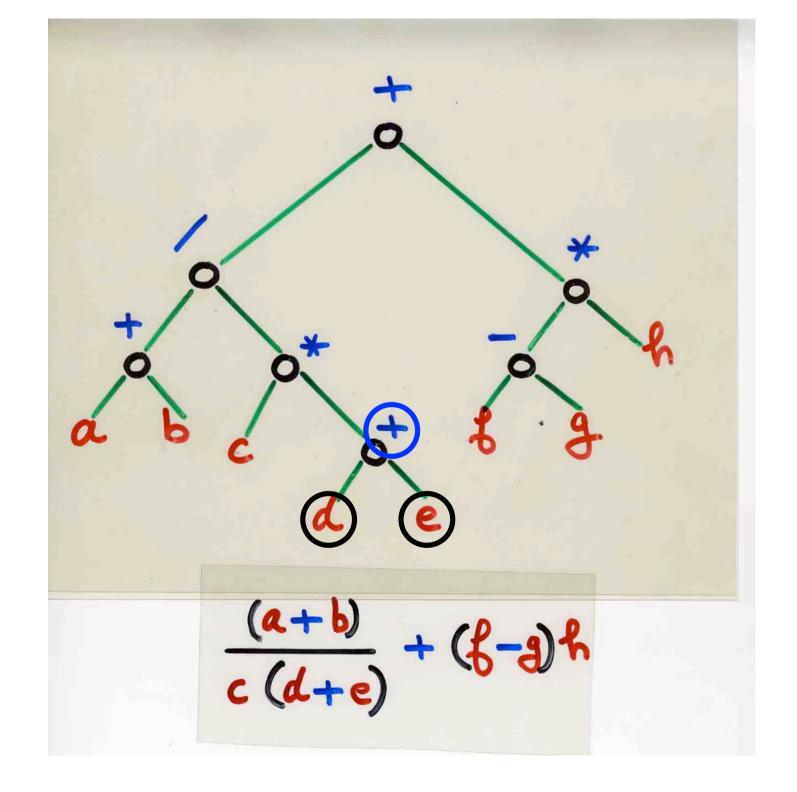
computing an arithmetical expression

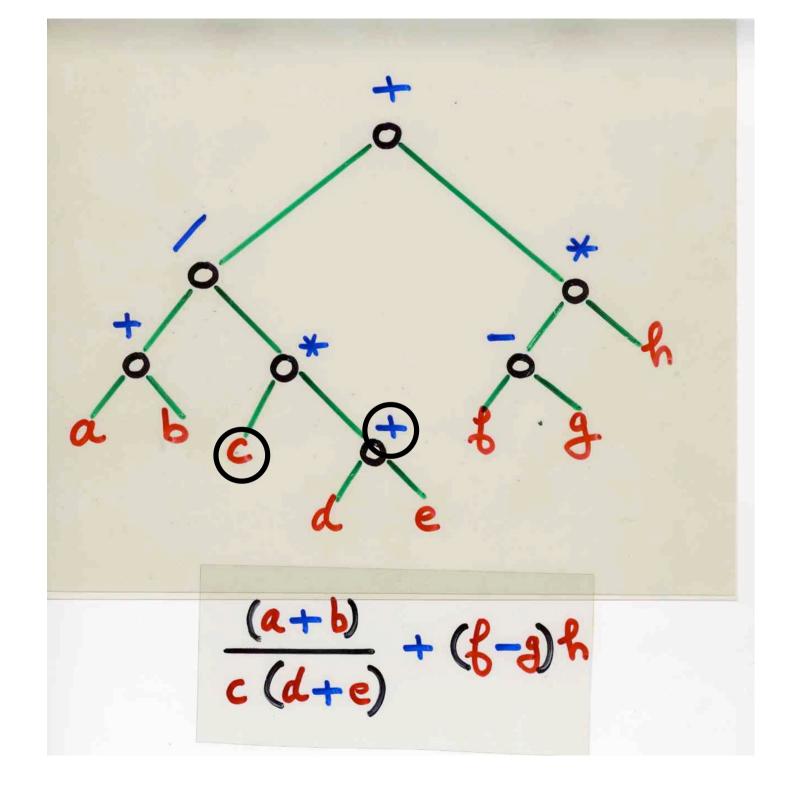


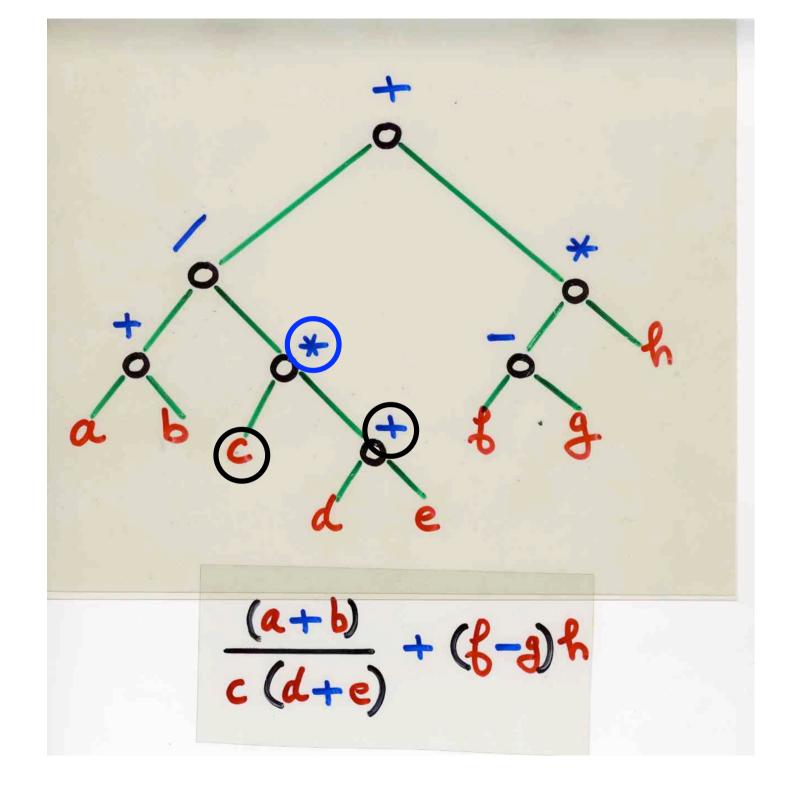
 $\frac{(a+b)}{c(d+e)} + (b-a)h$

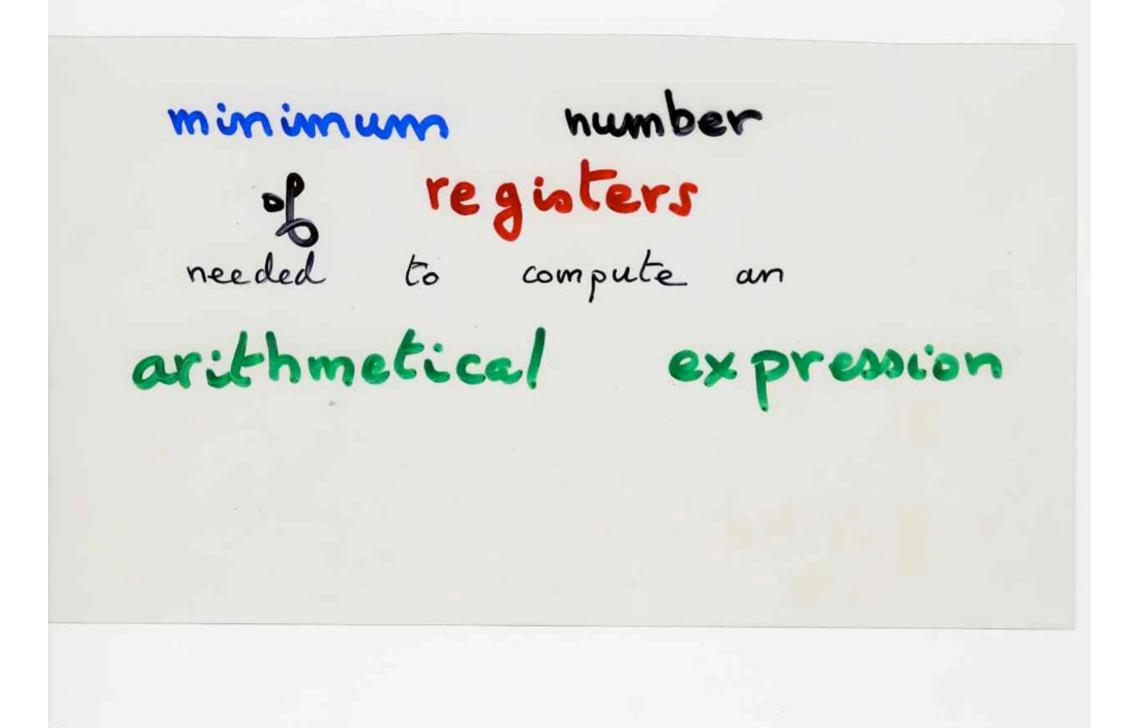


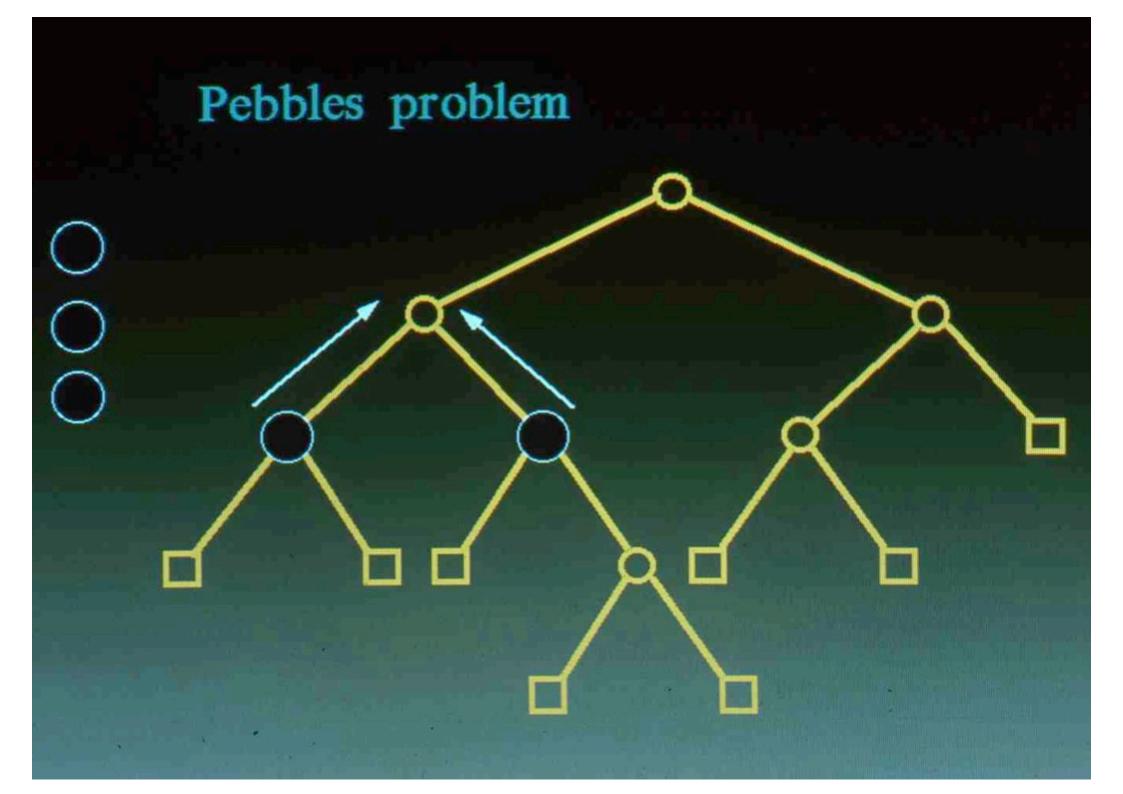


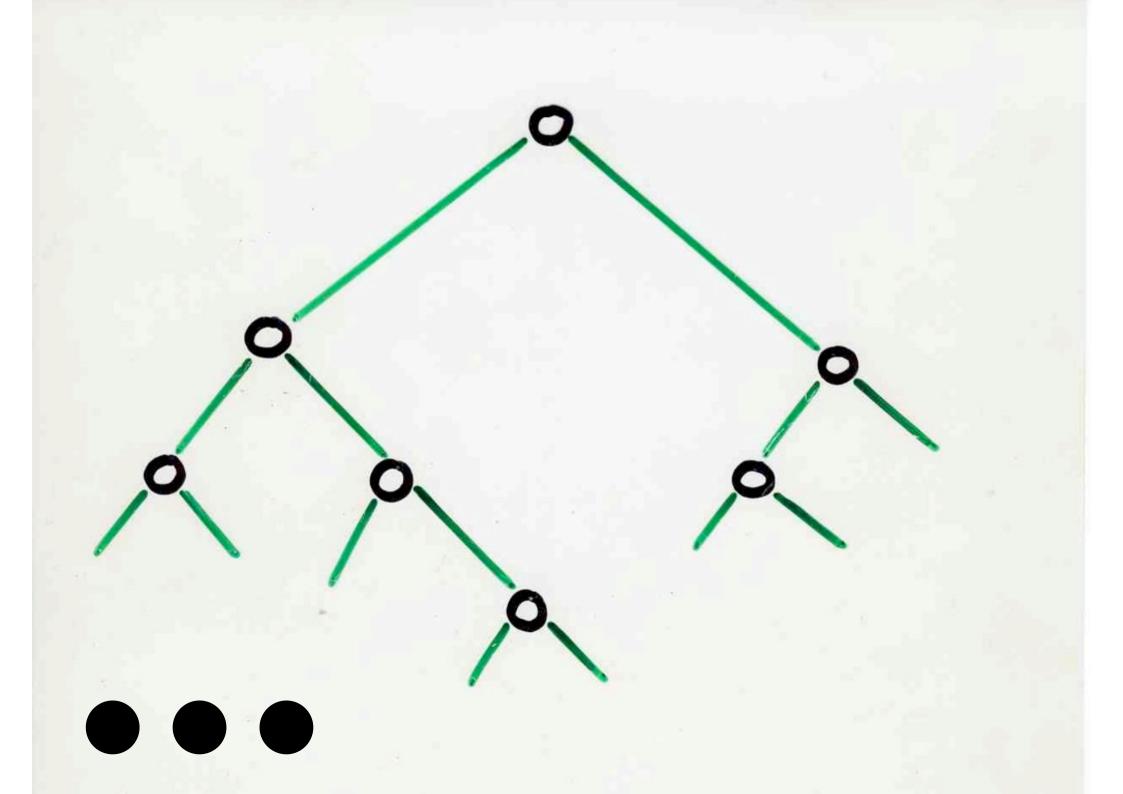


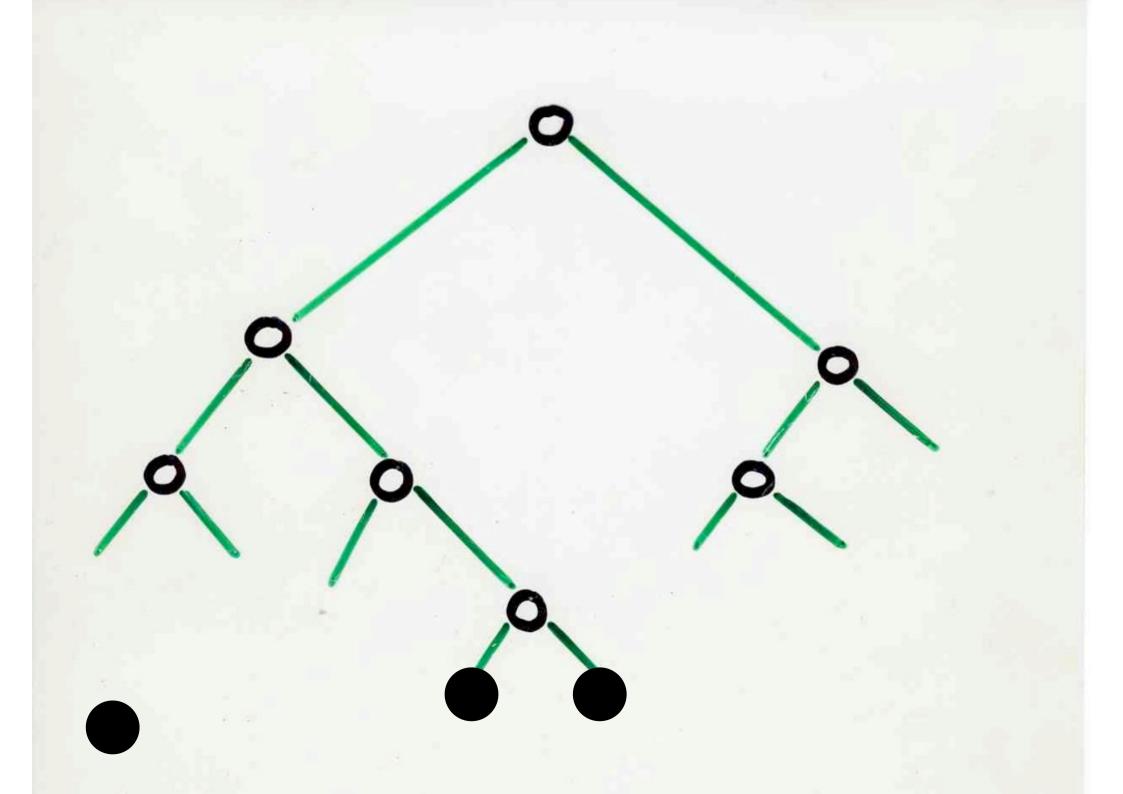


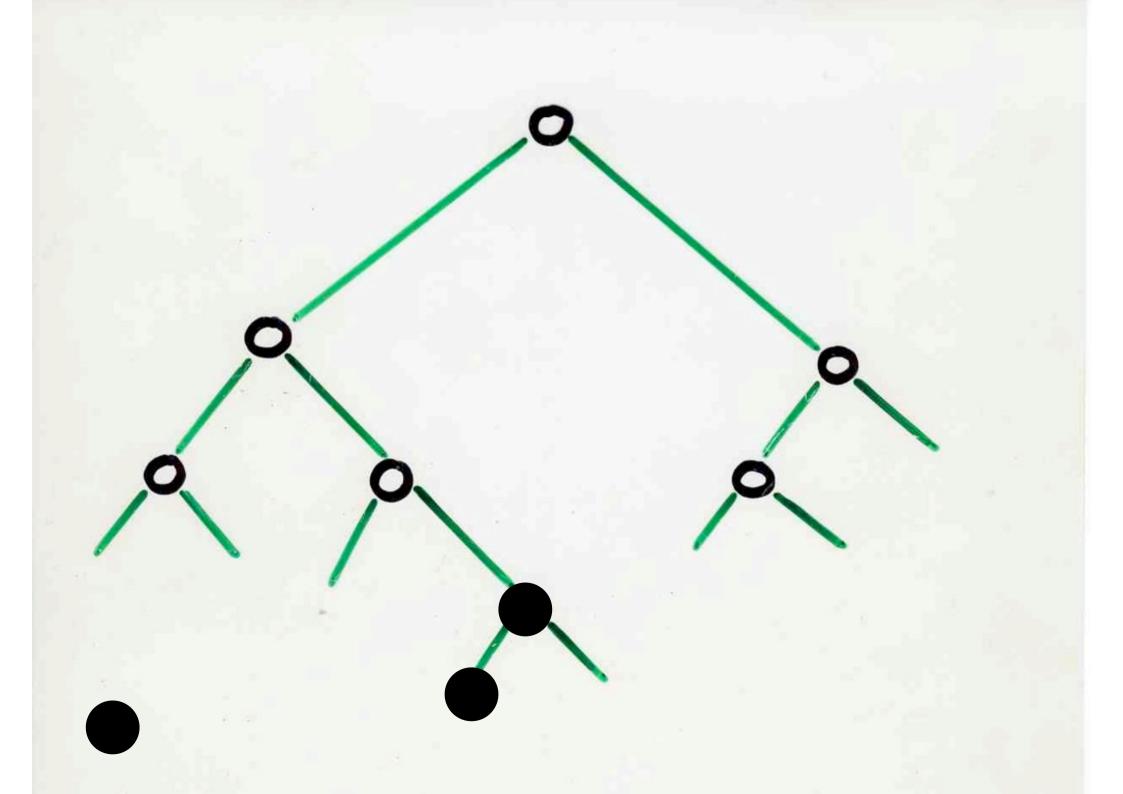


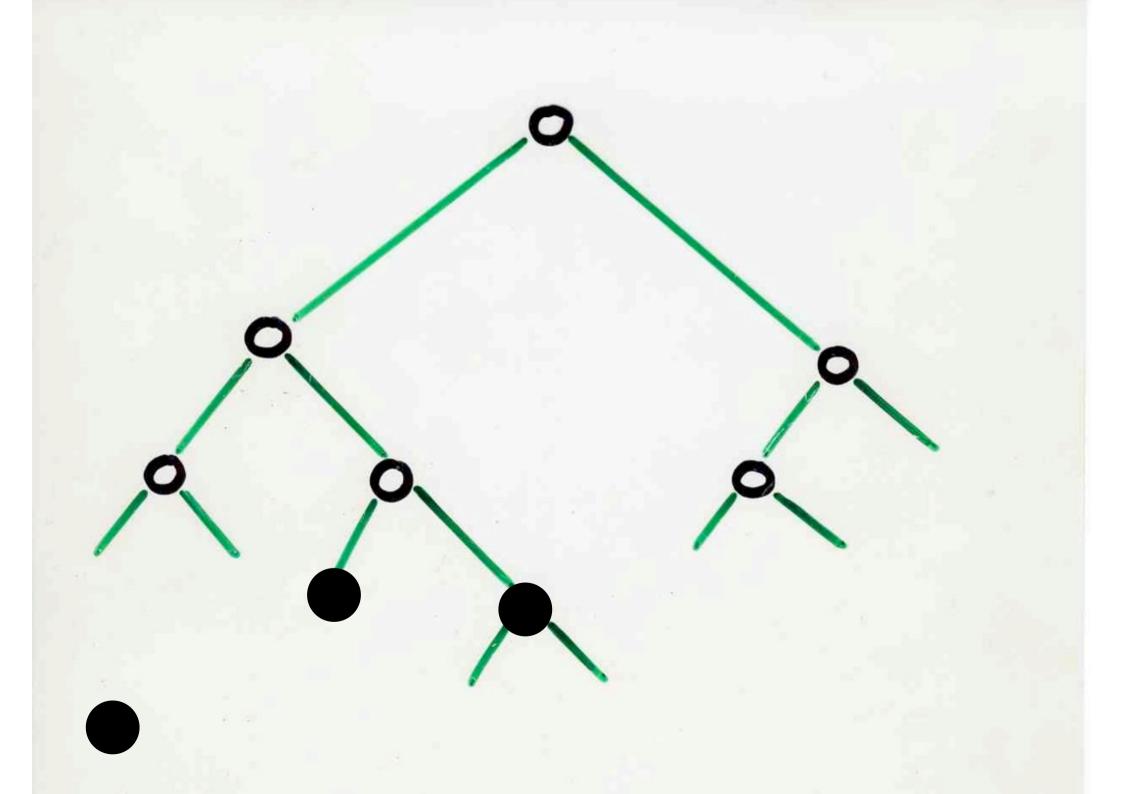


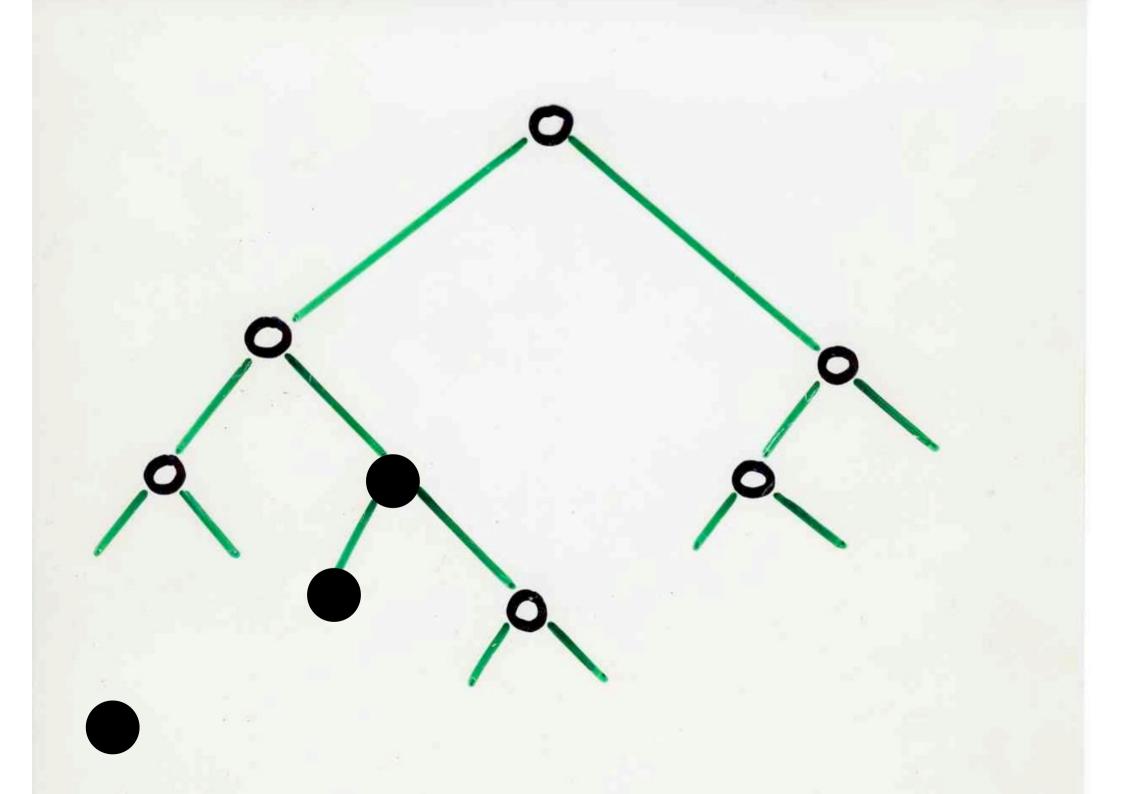


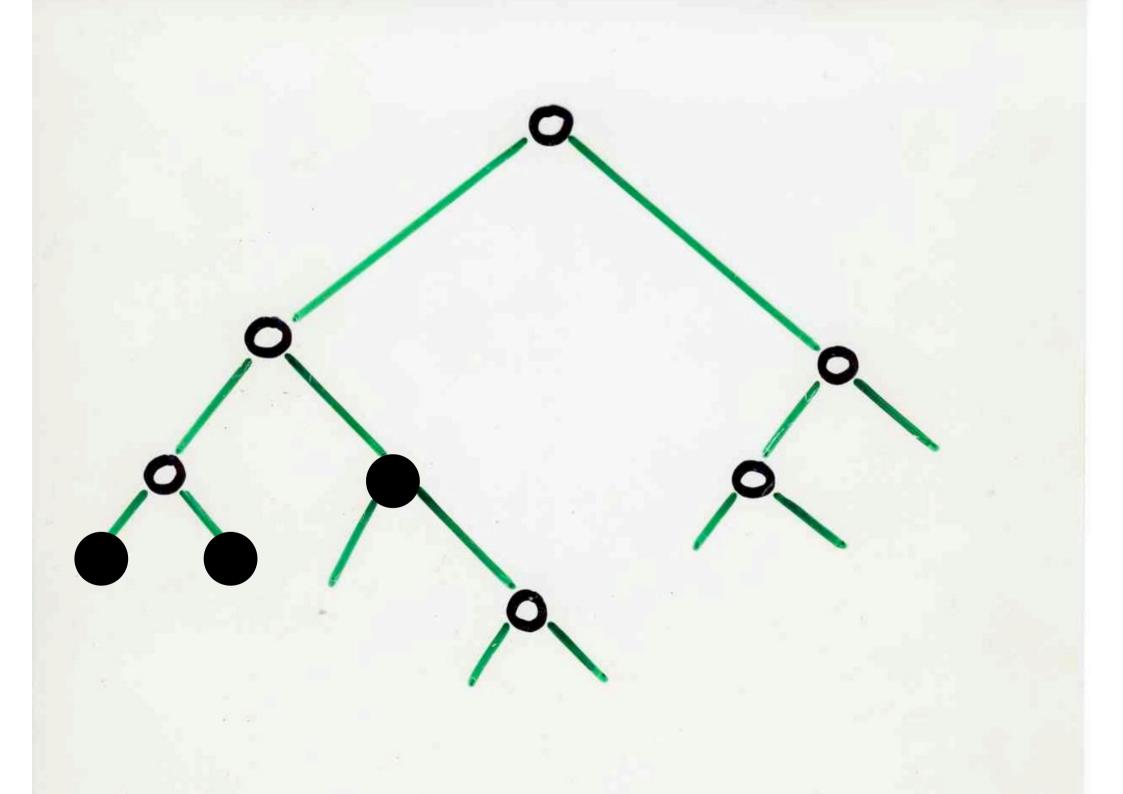


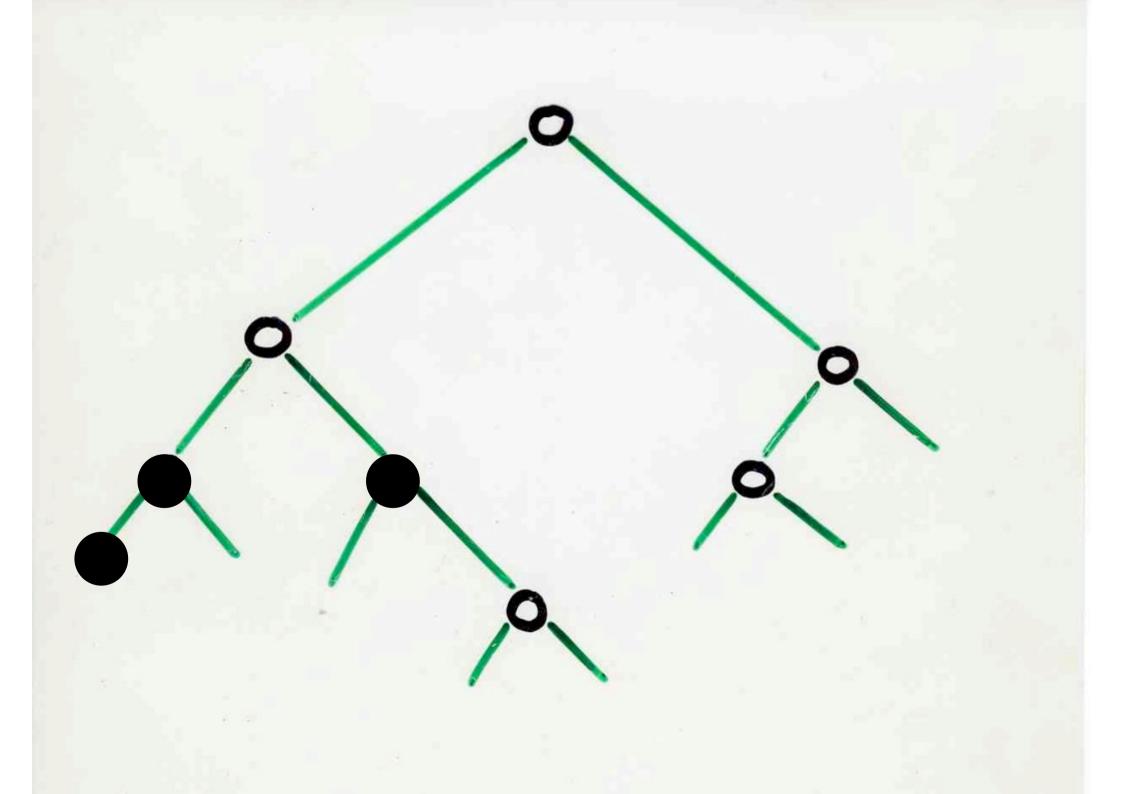


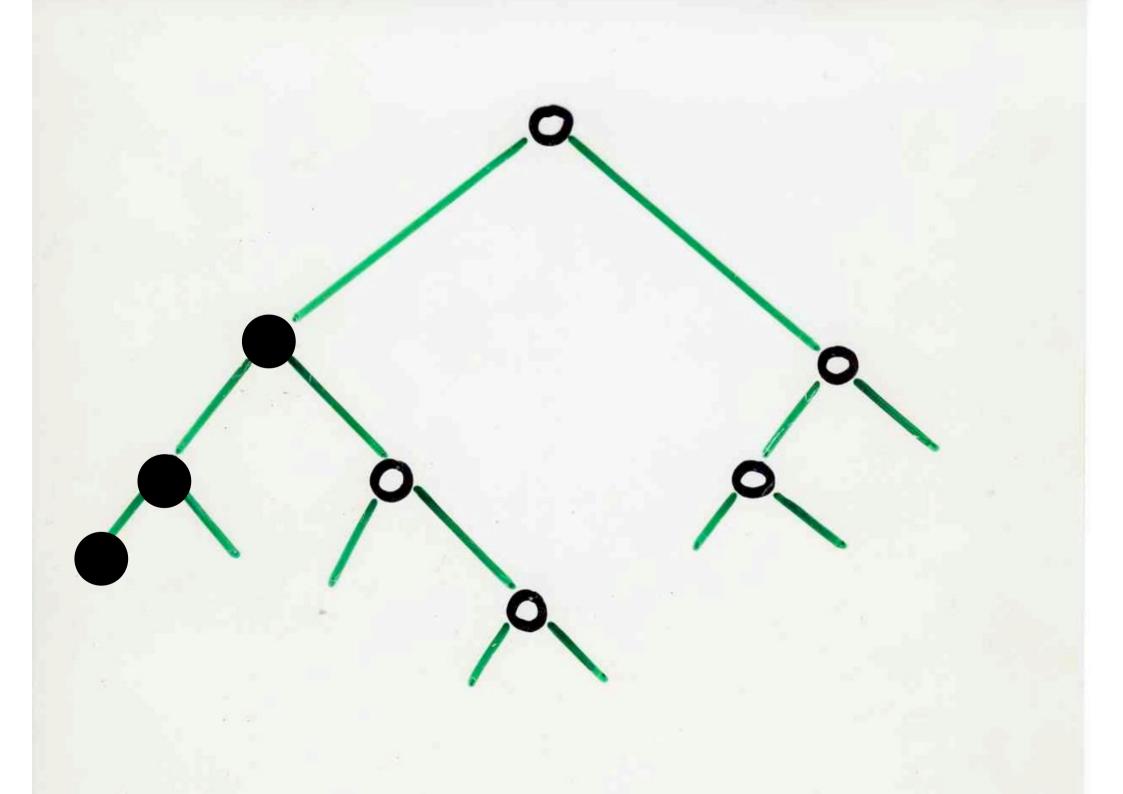


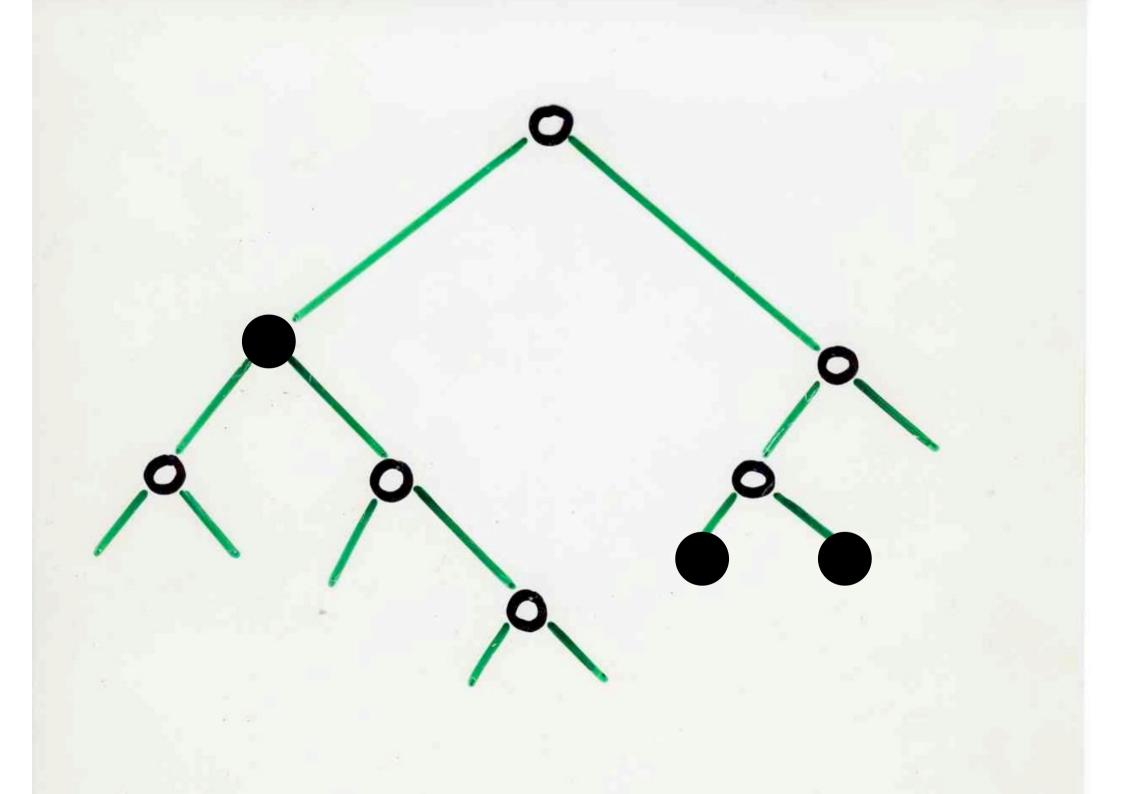


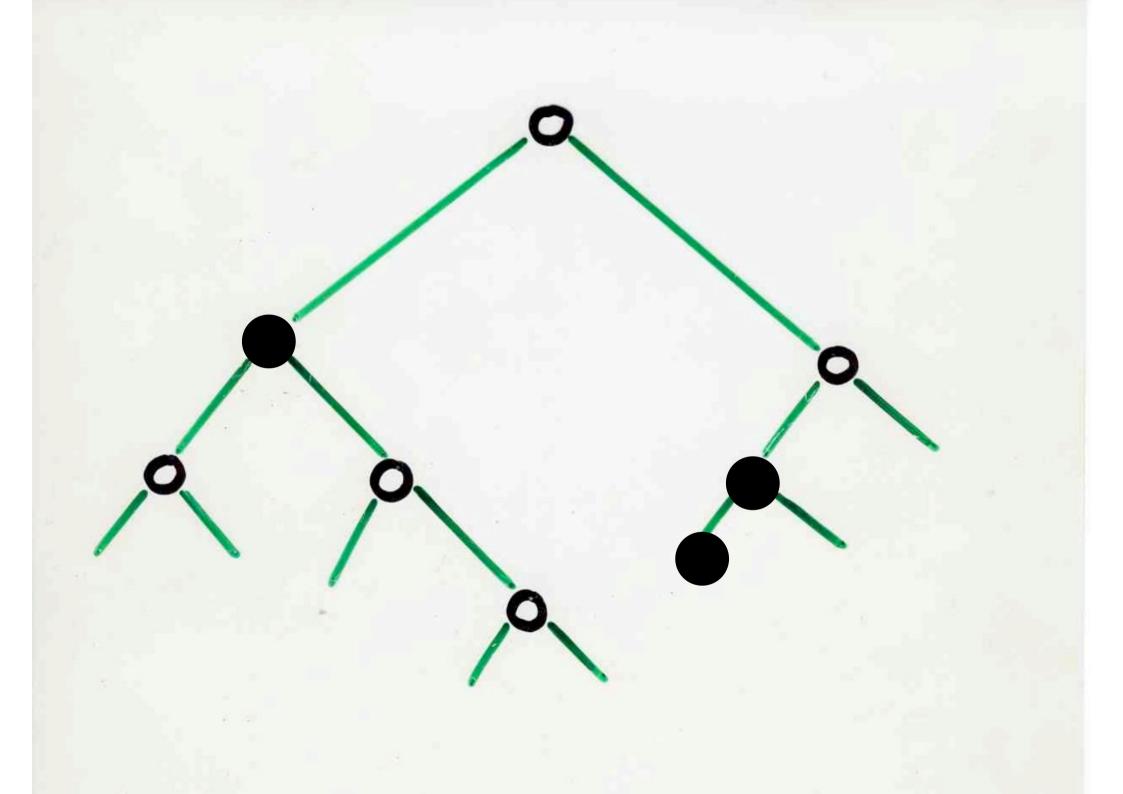


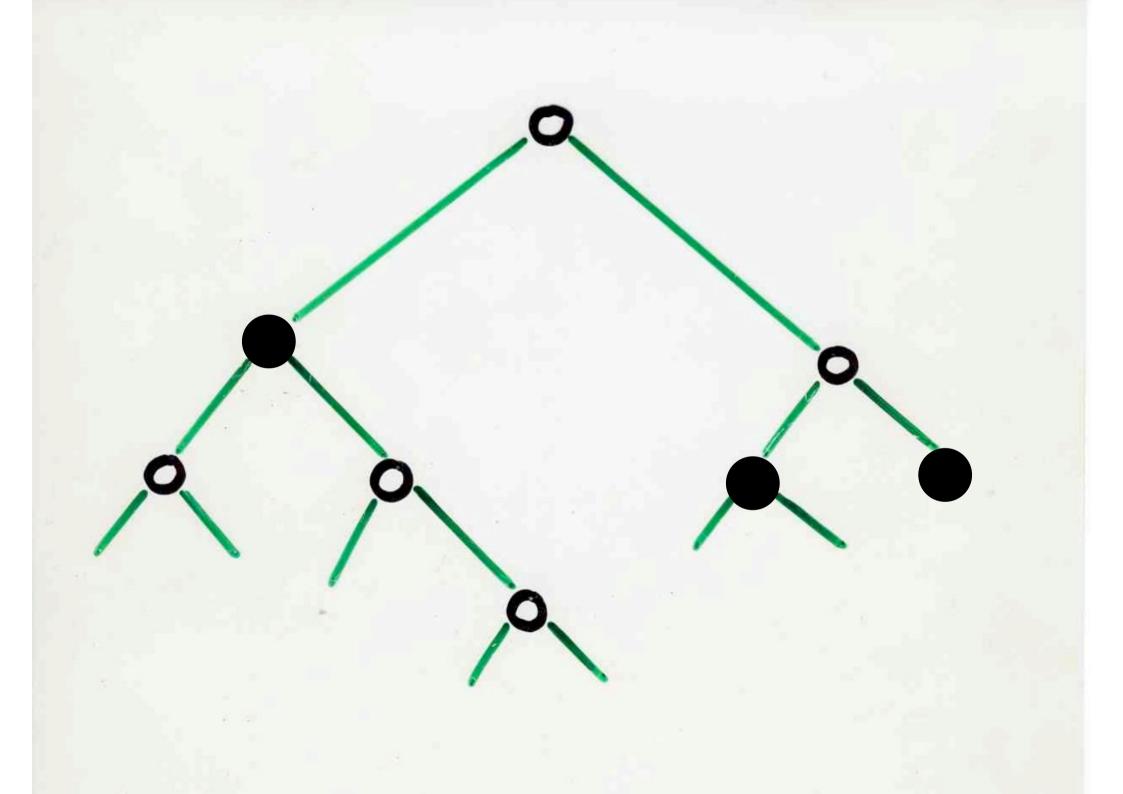


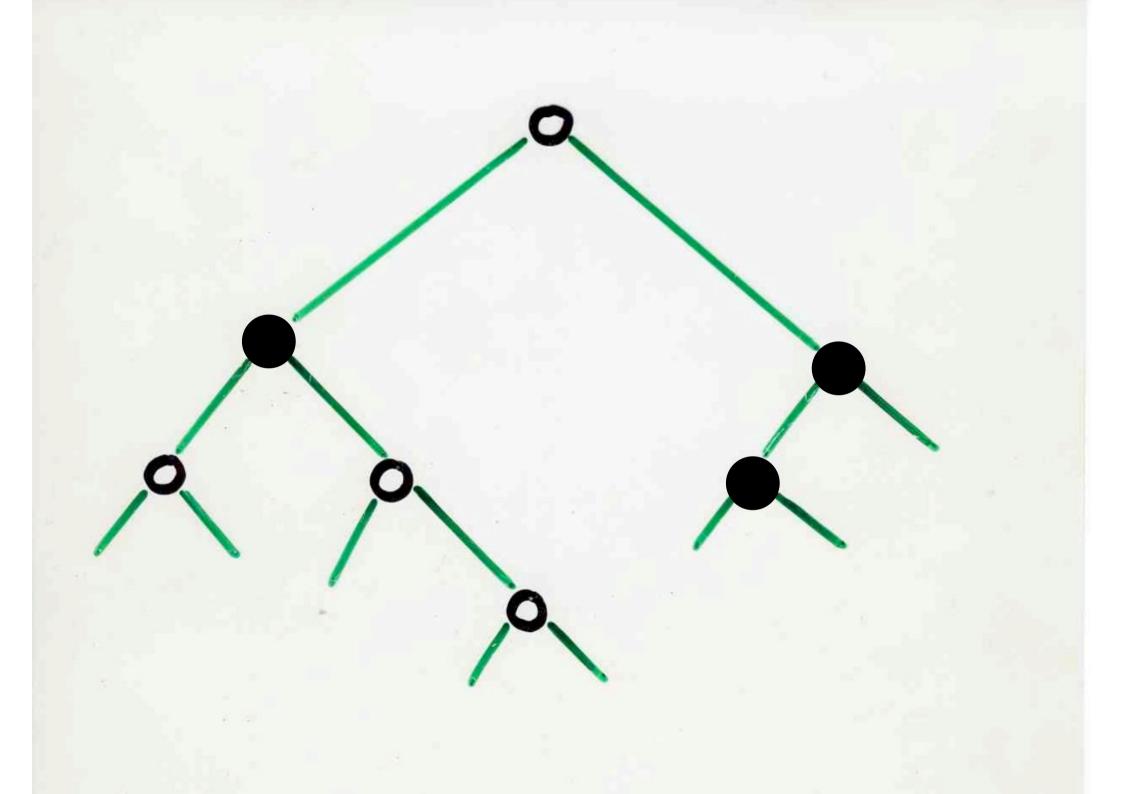


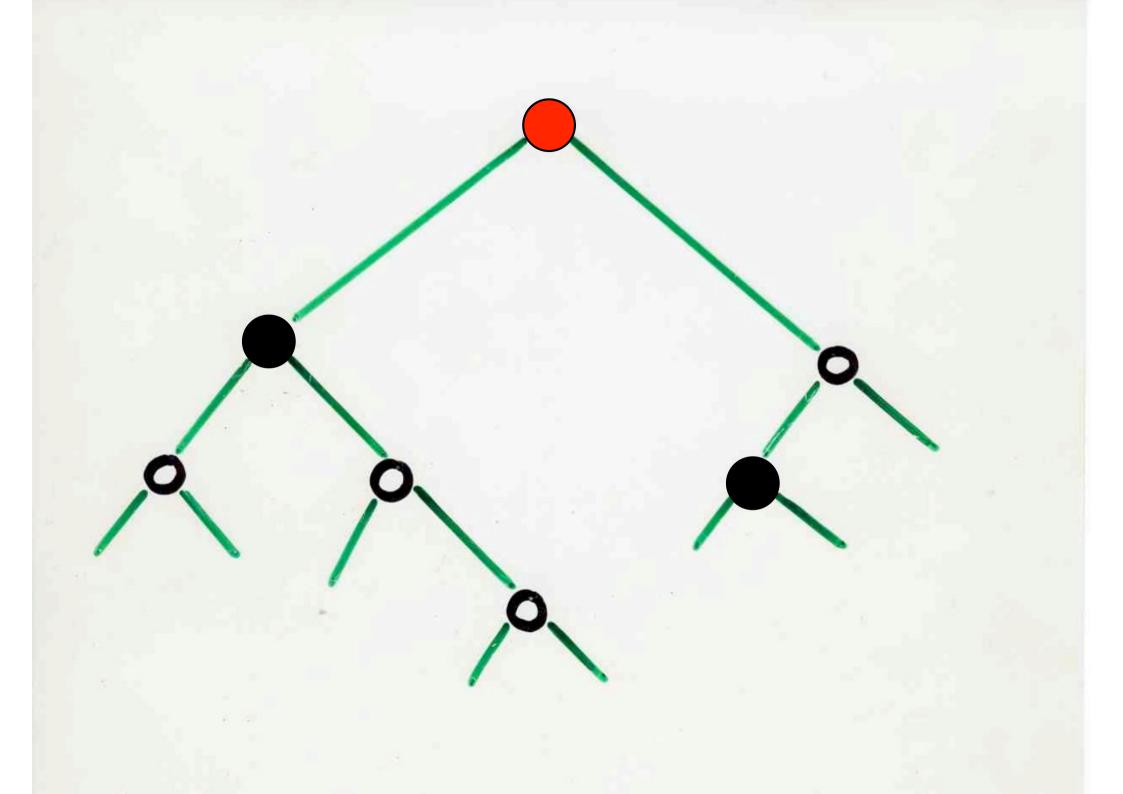






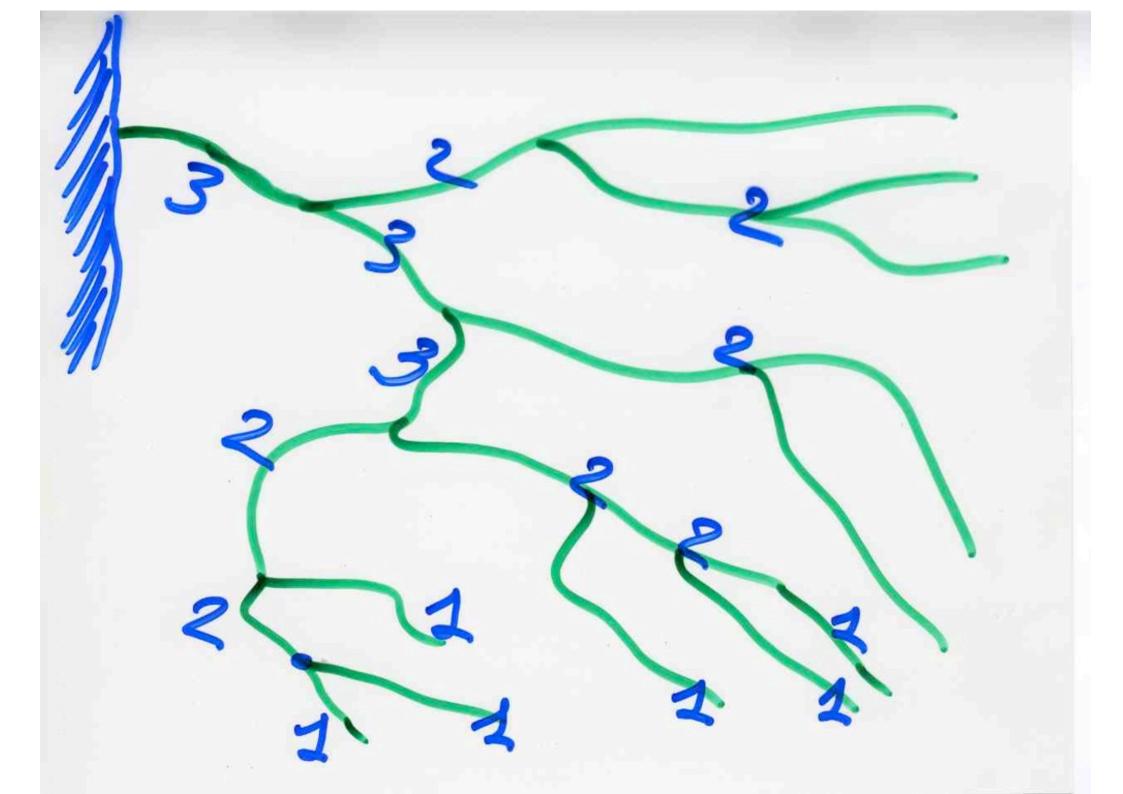


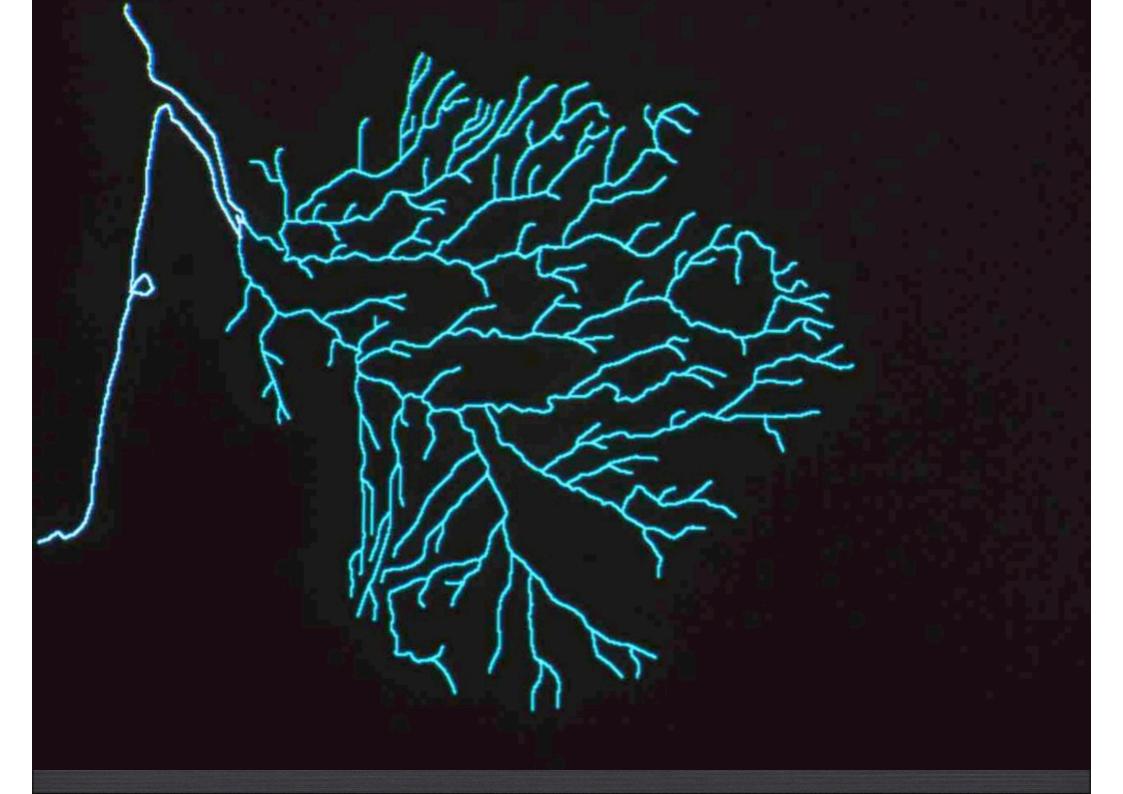


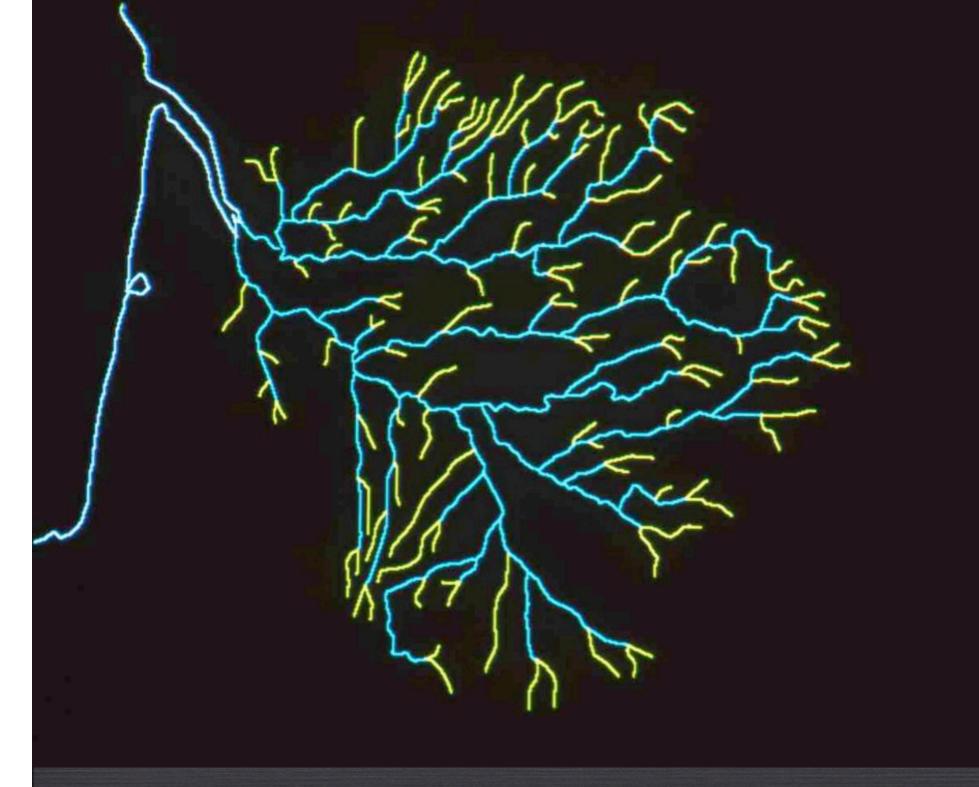


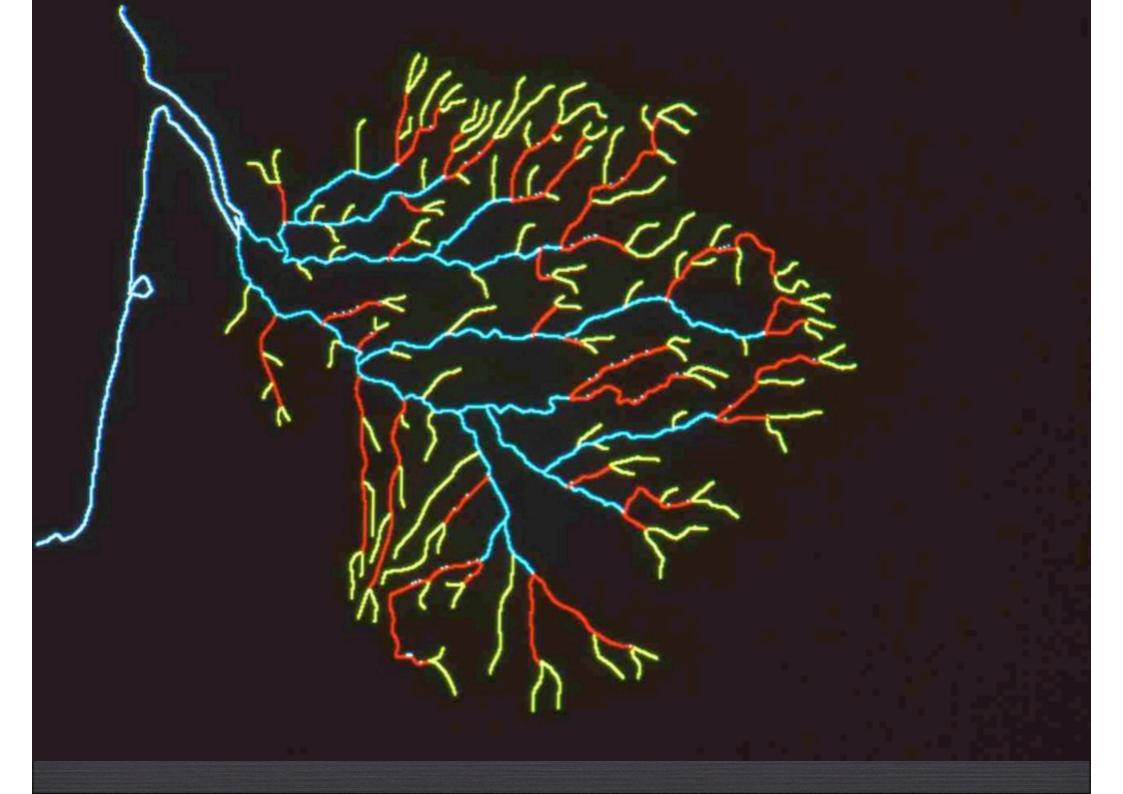
From trees to rivers

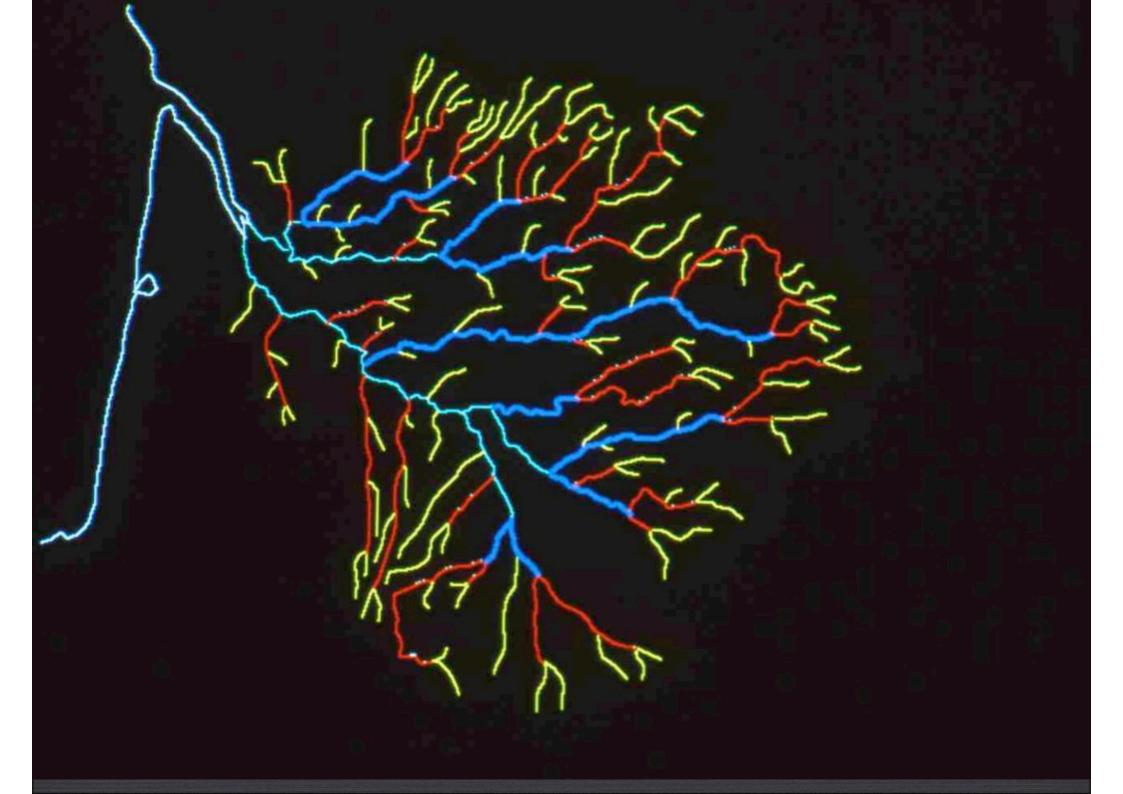
Horton (1945) Strahler (1952) Morphology rivers Order of a river

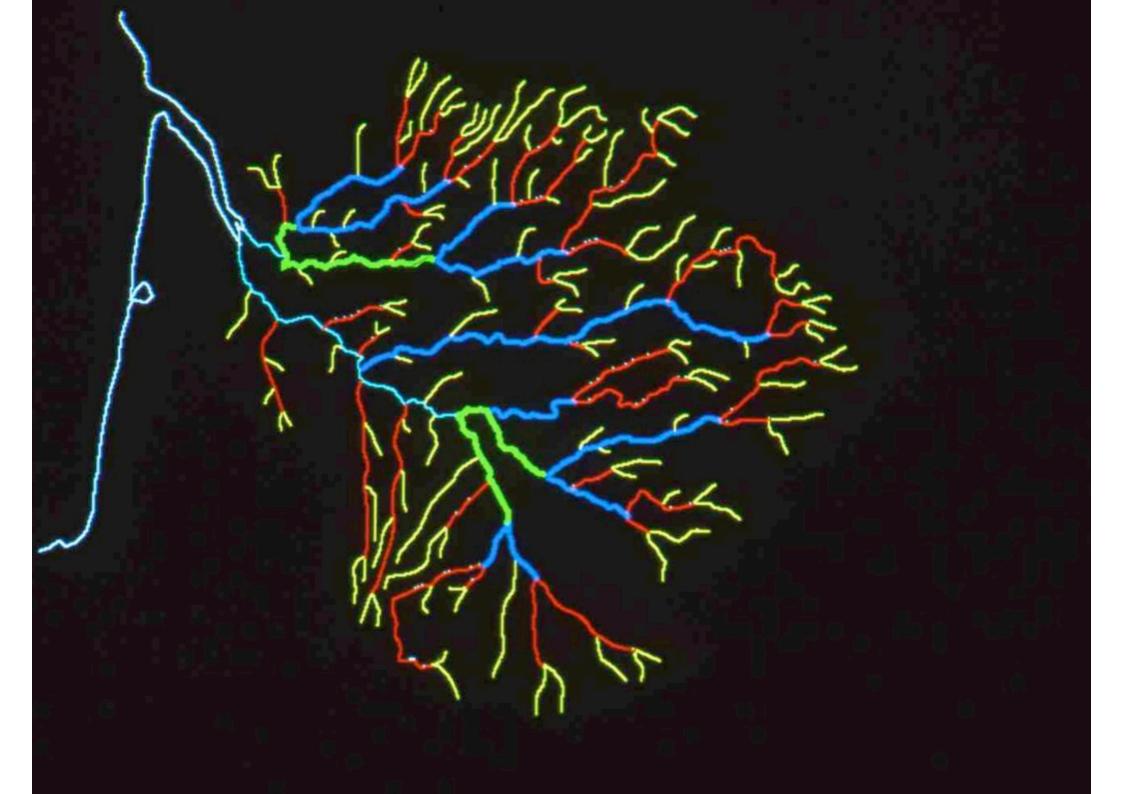


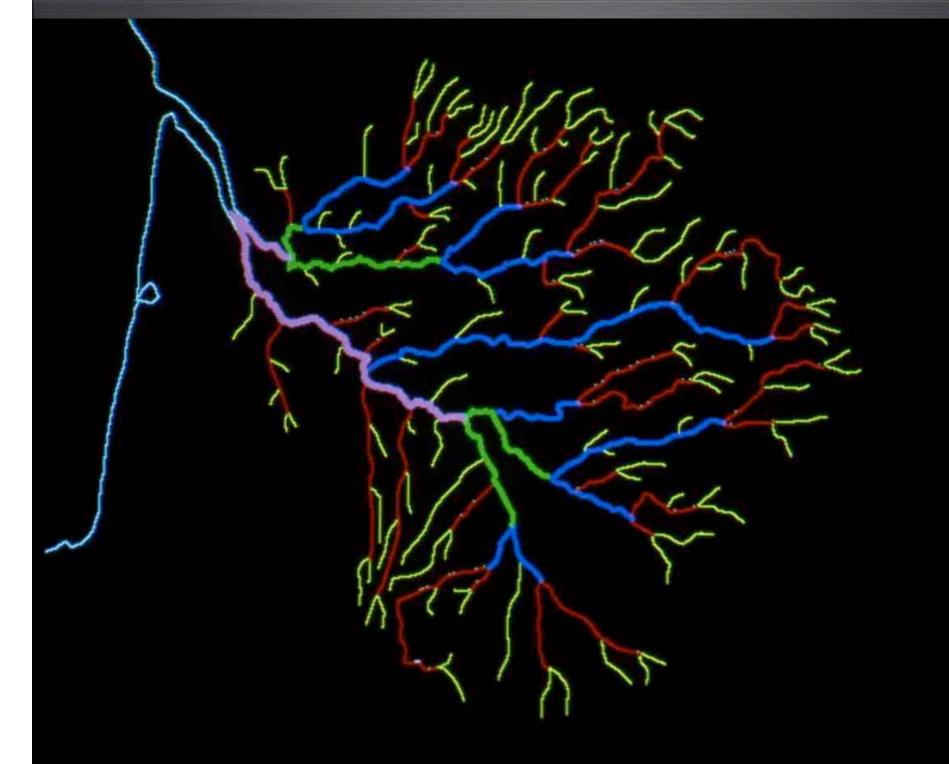


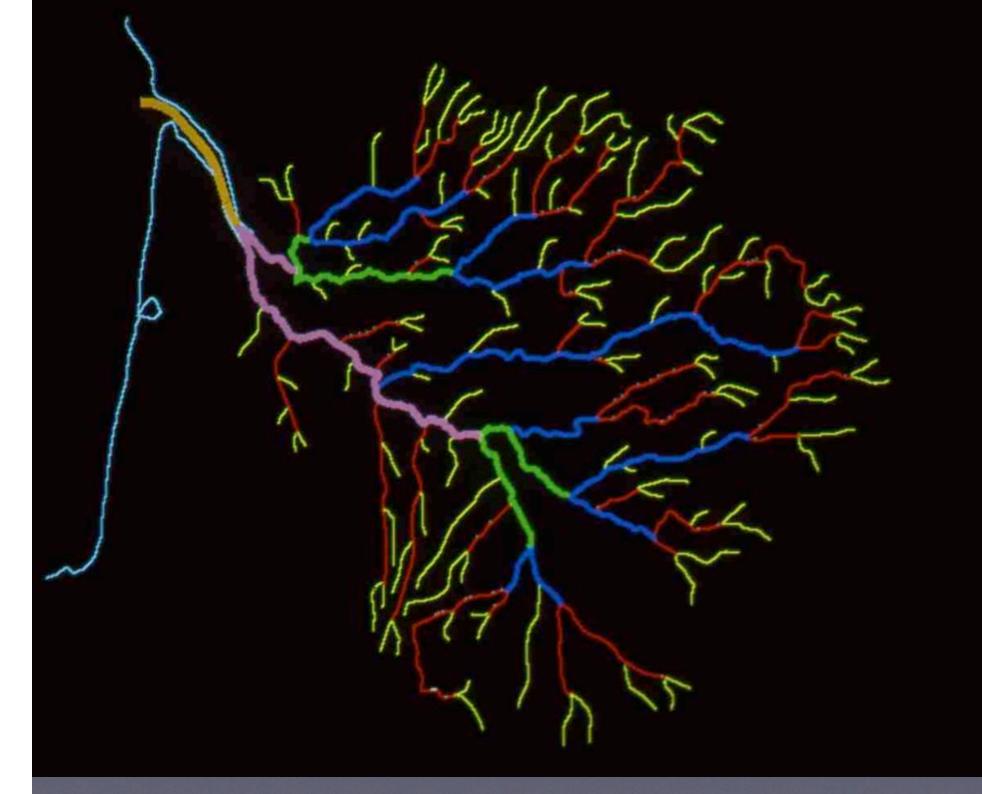


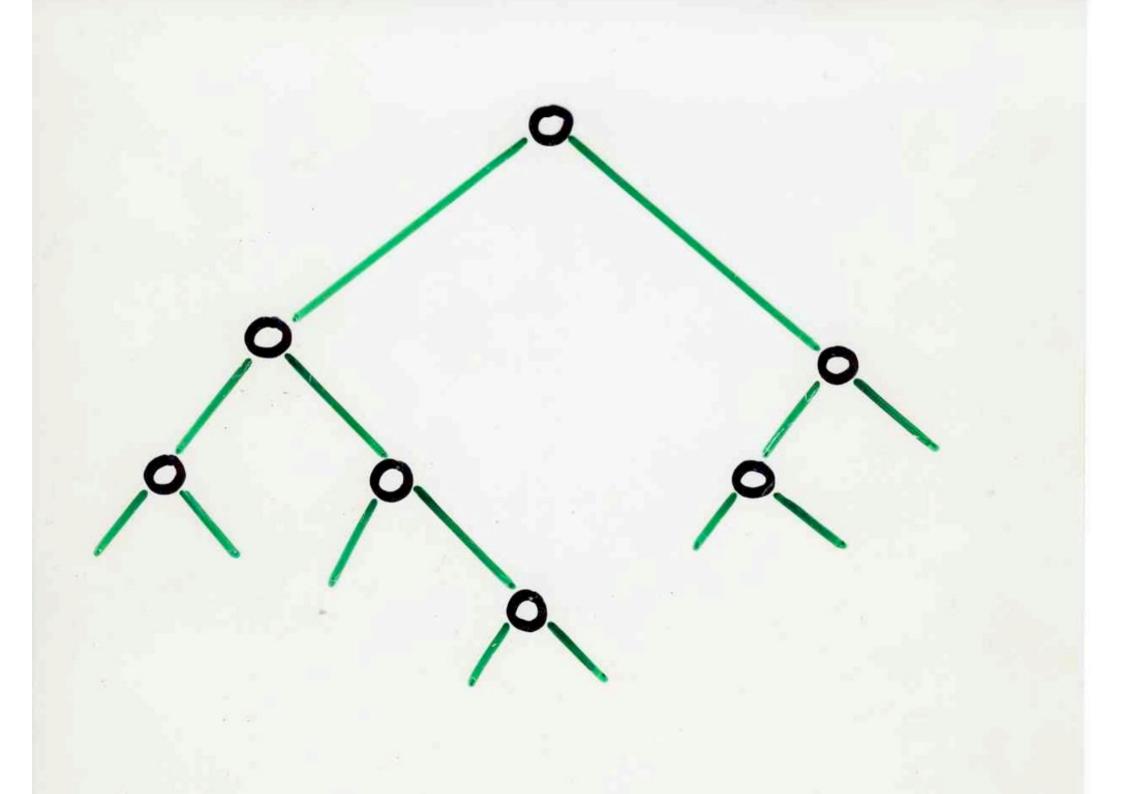


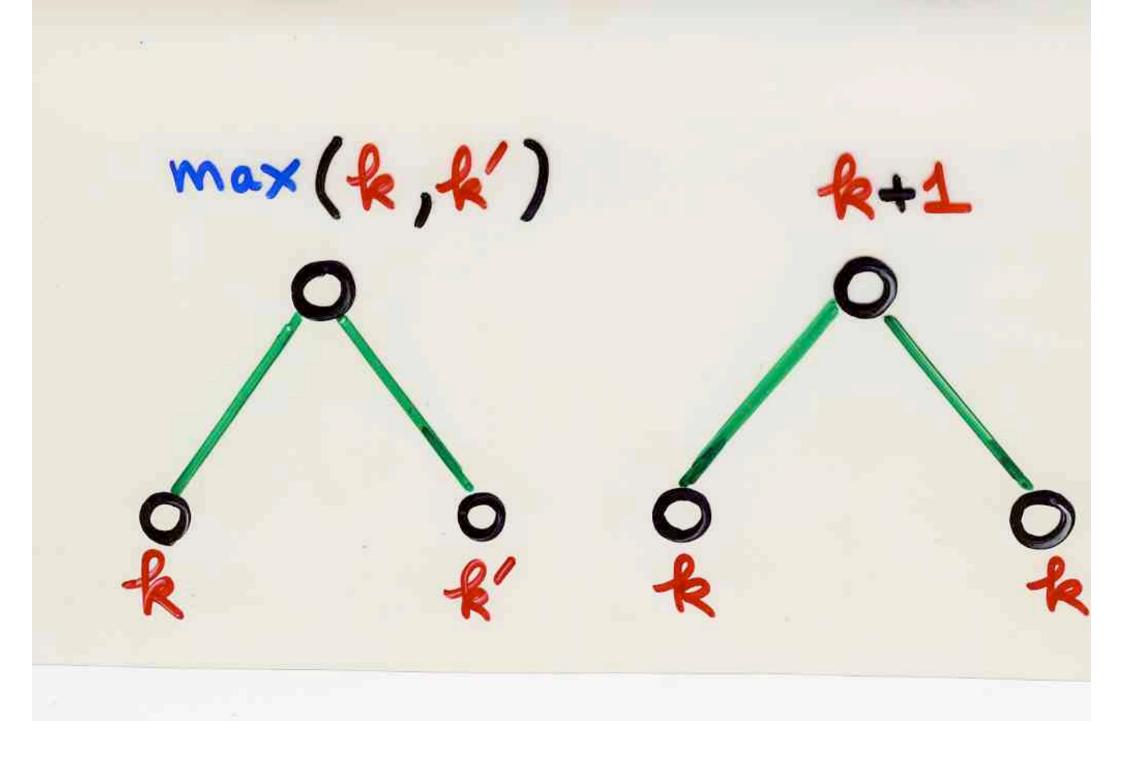












= minimum number of registers

) = St(B) nombre de Strahler

river or segment or order k

Segment of order k

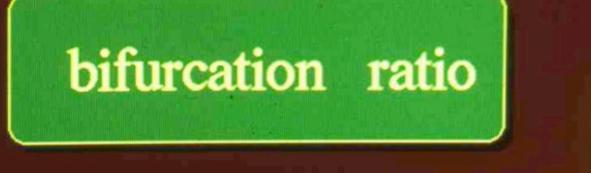
k

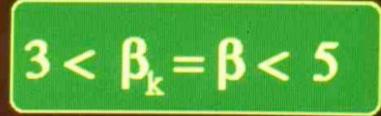
K> k

k-1

k-1

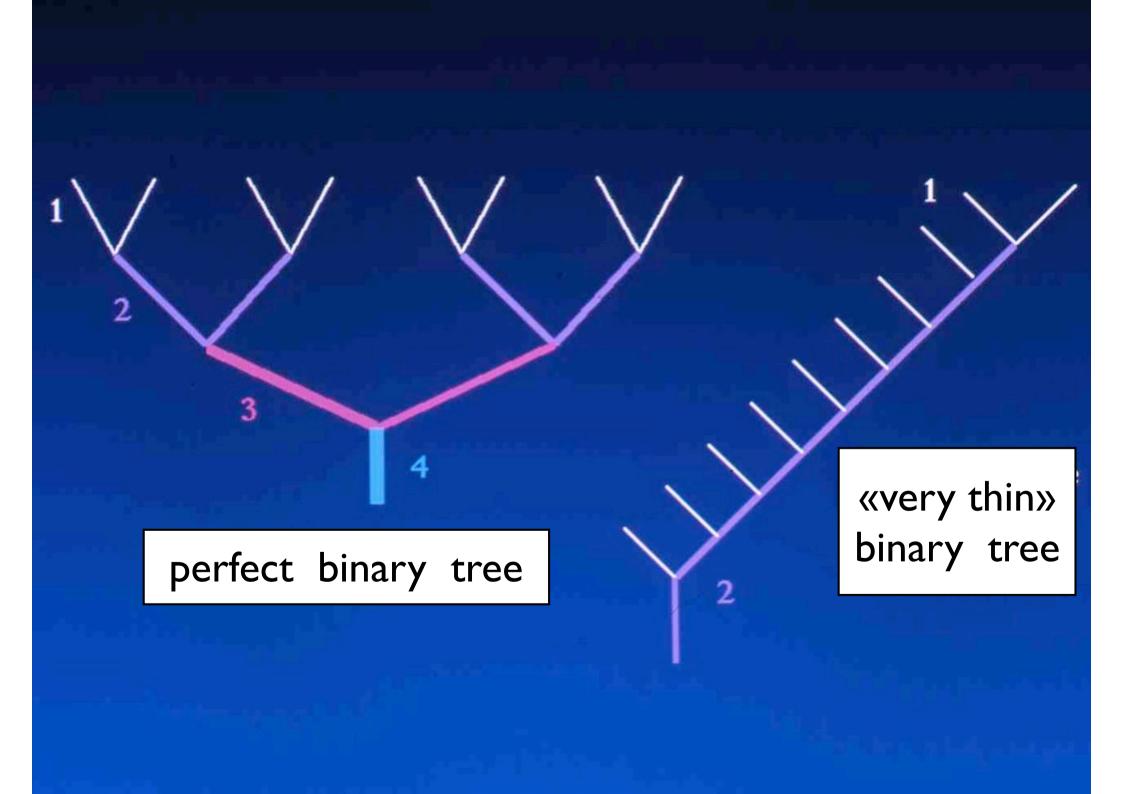
k





b_k = number of segments of order k

Segments



correlation between the «shape» of the river network and the structure of the deep underground

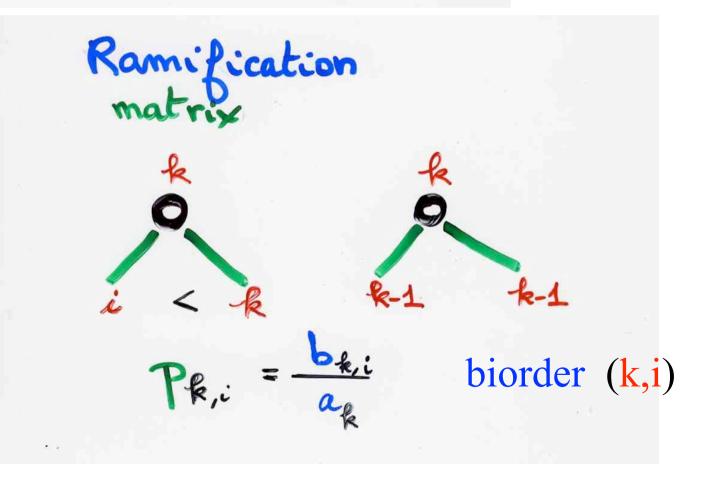
Prud'homme, Nadeau, Vigneaux, 1970, 1980

computer graphics

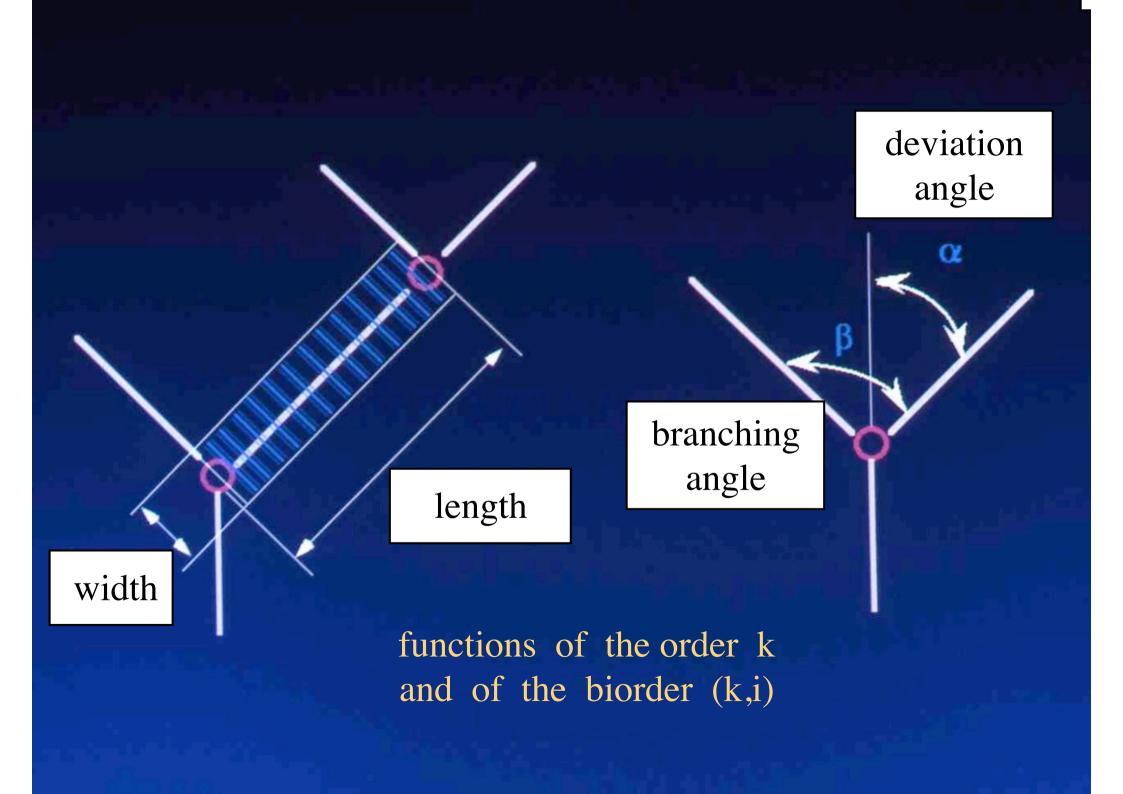
ramification matrix of a binary tree

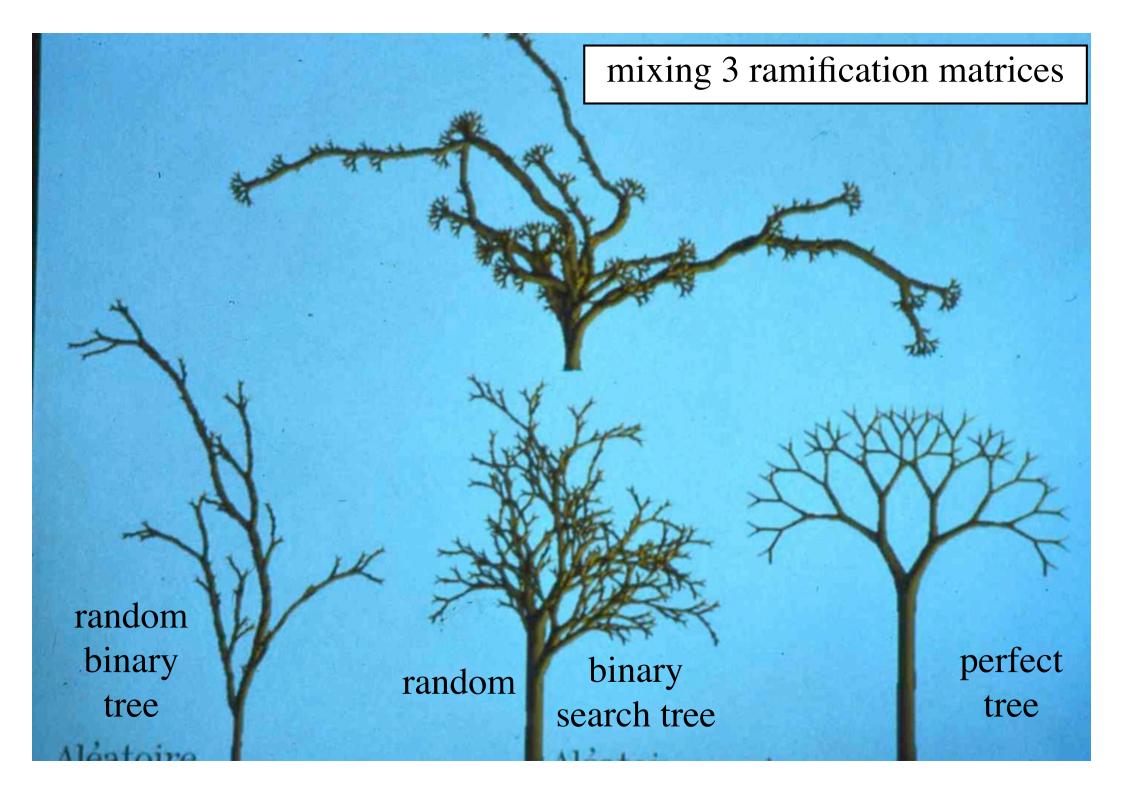
Arquès, Eyrolles, Janey, X.V. SIGGRAPH'89, IMAGINA' 90

Synthetic images of trees, leaves, landscapes... Arqués, Eyrolles, Janey, X.V.



matrix of probabilities

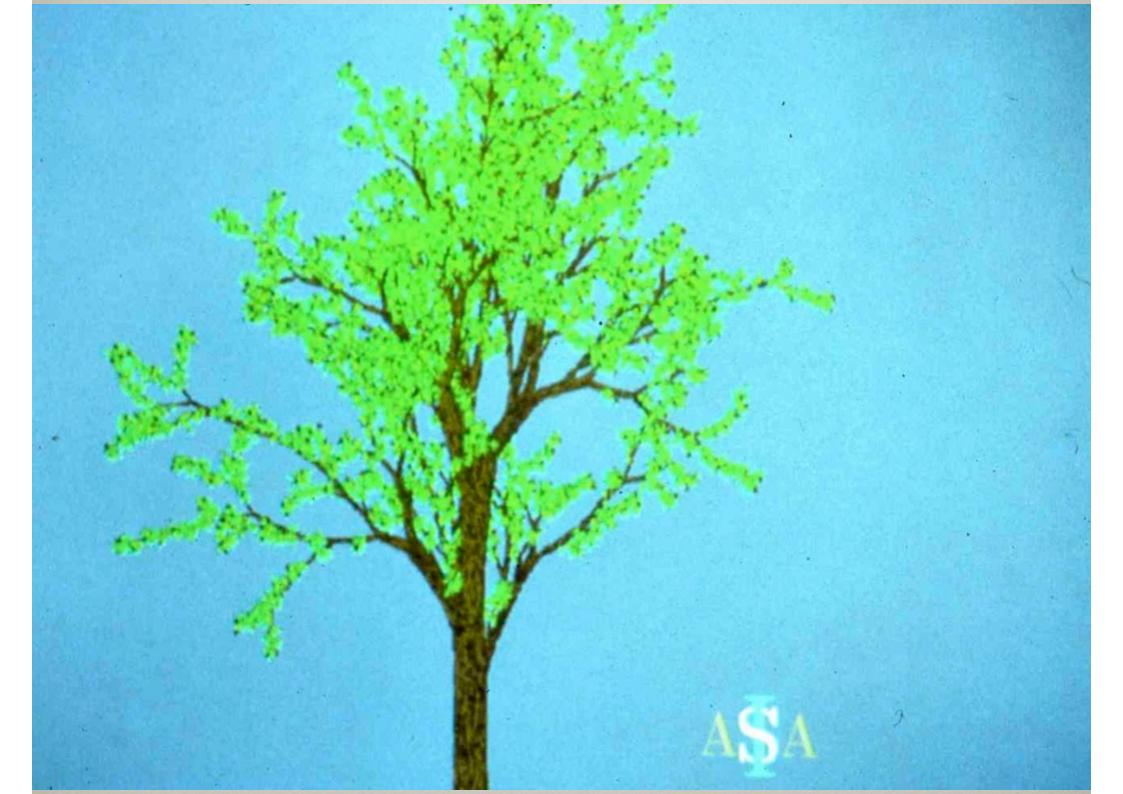


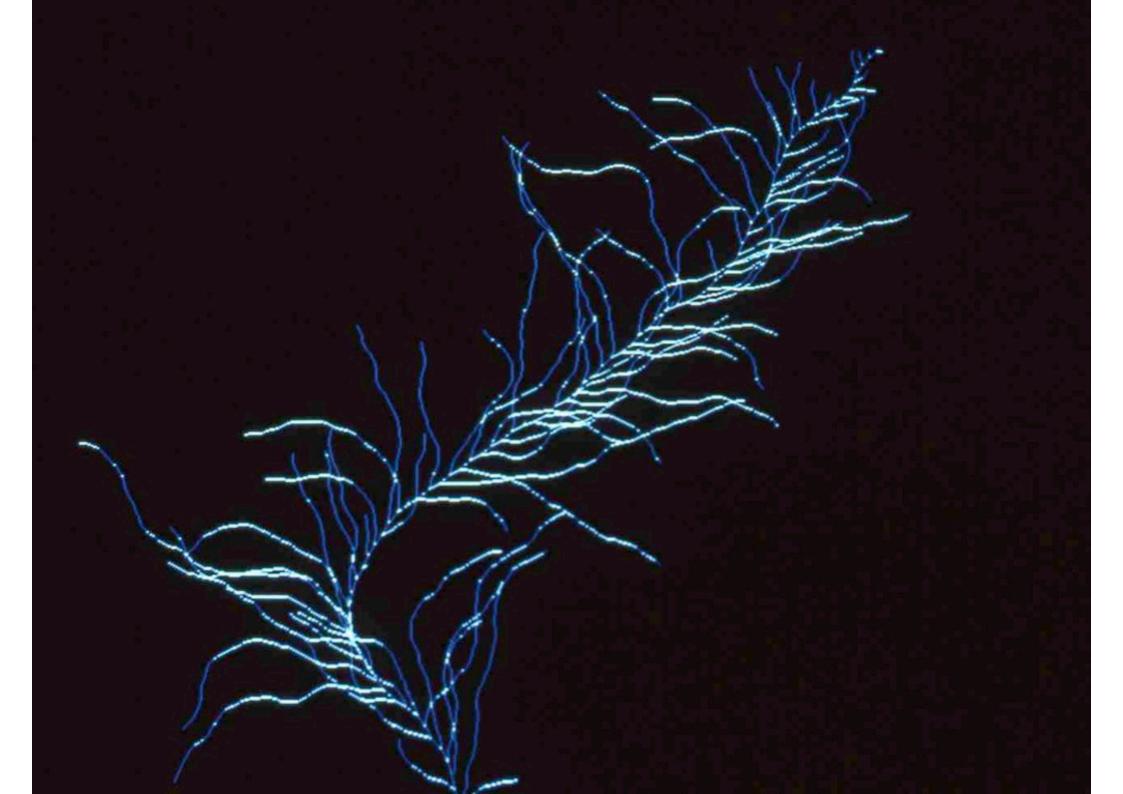


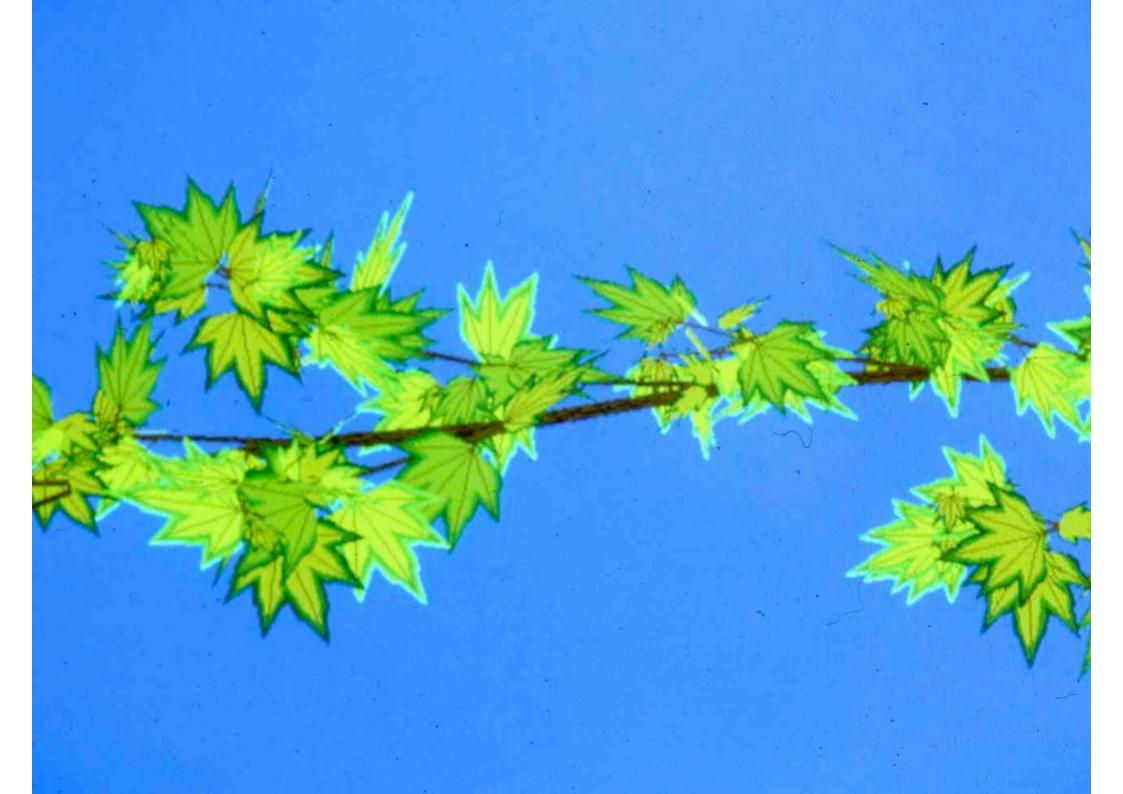
mixing 3 ramification matrices

3 «shapes»

3:	0	0	10000		1			1			
5 ::	5000	2500	1250 1250	625 625	625 313			The second			
B :	63	250 125	250	500	1000	2000	3125	3062			
10:	15	31	63	125	250	1000 500 125	1000	3000 2000 1000	3031 3000 2000	3016	3009







If there exist some beauty in these synthetic images of trees, it is only the pale reflection of the extraordinary beauty of the mathematics hidden behind the algorithms generating these images

average Strahler number over binary trees n' vertices St = log n + f(log n) + a(1) Flagislet, Rasult, Vuillemin (1979) periodic

Numbers theory

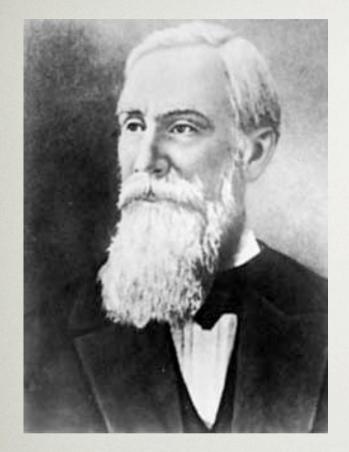
$$T(n) =$$
 number of 1's in the
binary expansion of 1,2,..., (n-1)

generating function S_{n,k} = nb of (complete) binary trees B n (internal) vertices Strehler nb St(B)= k

 $S_{k}(t) = \sum_{n,k} S_{n,k} t^{n}$

formal power series

 $S_{1} = 1$ $\frac{t}{1-2t}$ $S_3 = \frac{t^3}{1 - 6t + 10t^2 - 4t^3}$ $S_4 = \frac{t^7}{1 - 14t + 78t^2 - 220t^3 + 330t^4 - 252t^5 + 84t^4 - 8t^7}$



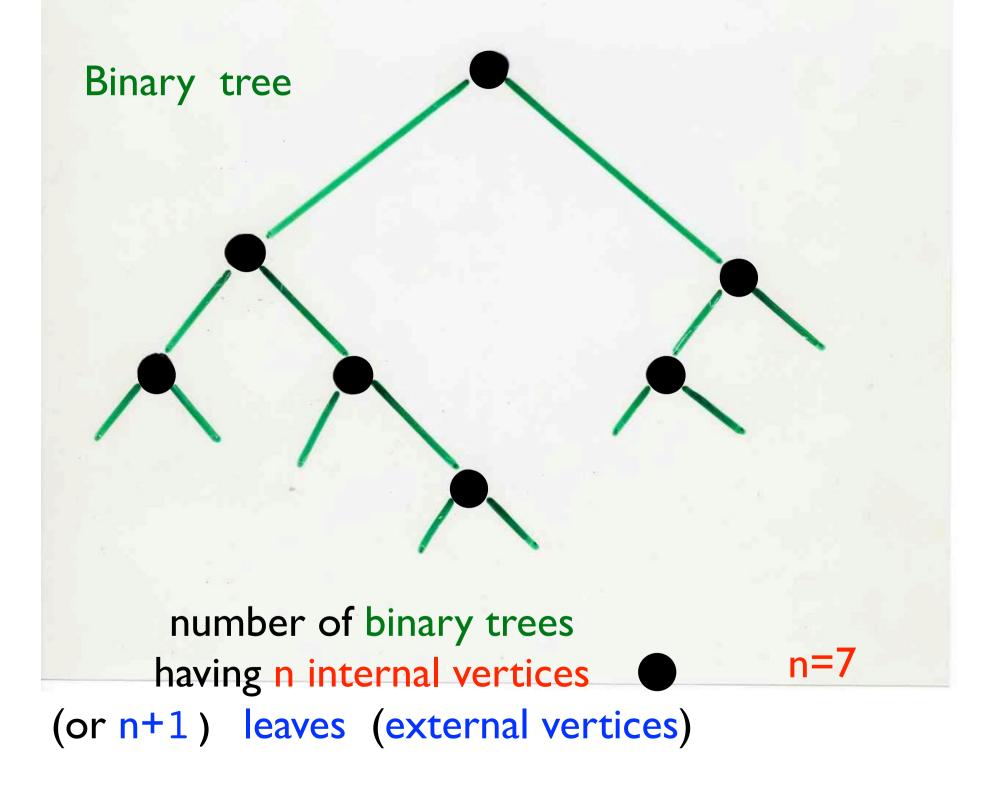
Chebyshev polynomials

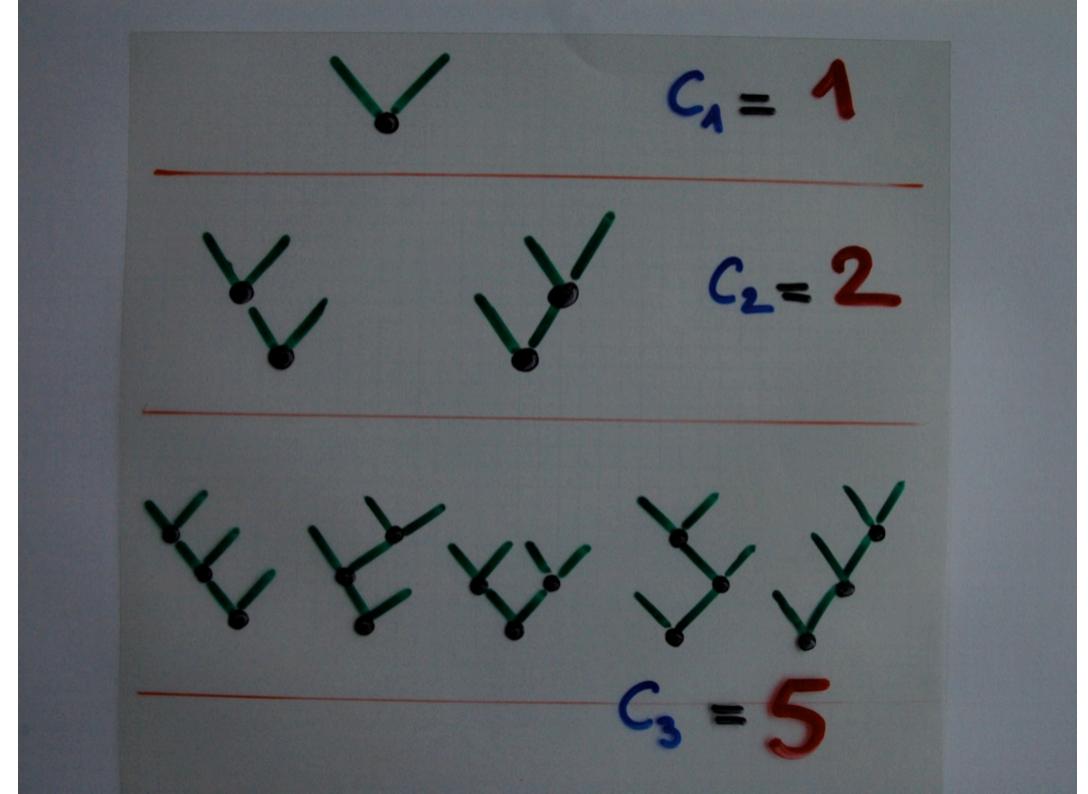
trigonometry

 $sin(n+1)\theta = (sin\theta)U_n(cos\theta)$

Pafnuty Chebyshev (1887-1920)

Counting trees ...





Catalan number

 $C_n = \frac{1}{n+4} \begin{pmatrix} 2n \\ n \end{pmatrix}$ (2n)!(n+1)! n! $n = 1 \times 2 \times \dots \times n$

1 1 2 5 14 42



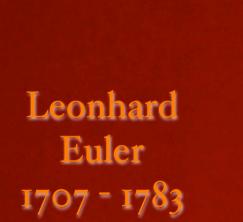
Catalan numbers

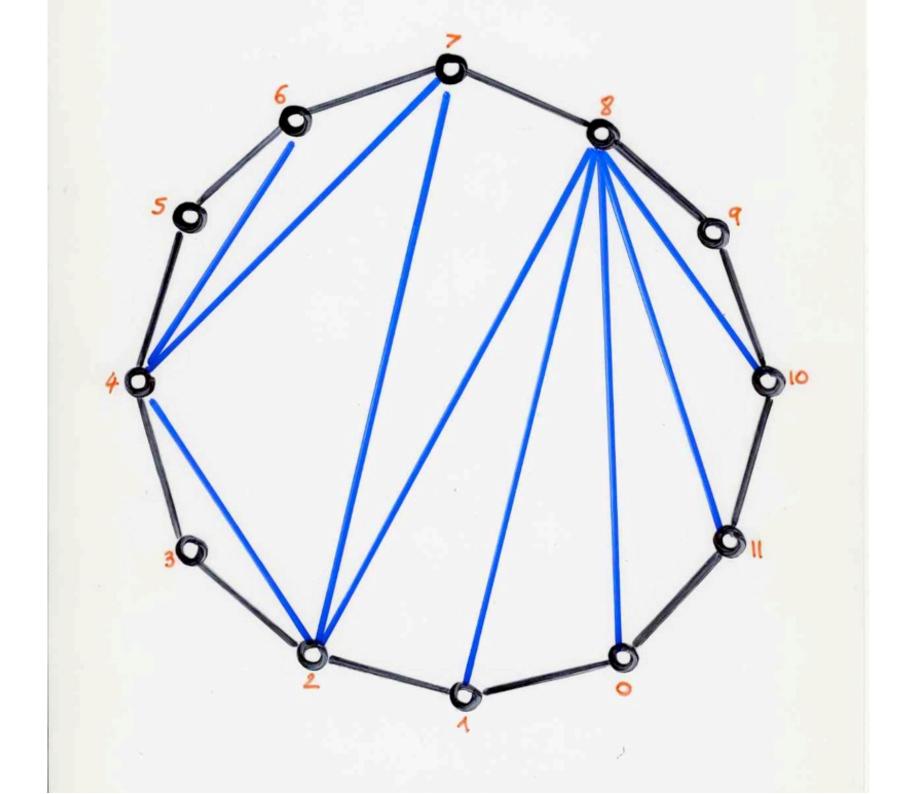
E. Catalan (1814-1894)

fild and ships for and 8 the first the getting of the Anna his an Aufral hing & Diegonale in & Jorangela Zafald and high has and 14 Lappine Calo giftefor. This if his boy generaliter. I in Jolygonen In n finty find n-3 Diagonala in n-2 Grangula fighentty had, and his histore high higher and the fille griffen haven. Auguit with difer life highing Arten = x bann n = 1,2,5,14,42,132,429,1430, To fait it = 1, 2, 5, 14, 42, 152, 429, 14 1.1 Firmer fabri of In file powerft. In generalite 2.6.10.14.18.22. (411-10) (n+1)!n! x = 2.3 A. 5. 6. 7 (n-1) $C_{n} \equiv \frac{1}{n+1} \begin{pmatrix} 2n \\ n \end{pmatrix}^{e_{n}} \frac{2\pi r}{r} \begin{pmatrix} k \\ n \end{pmatrix}^{e_{n}} \frac{2\pi r$ 5=2:12:14=5.17, 42=14.7

A letter from Leonhard Euler to Christian Goldbach

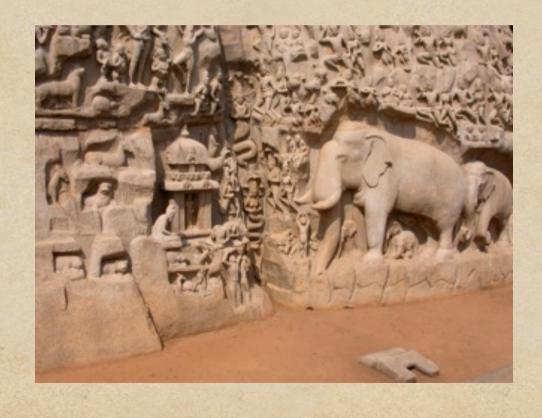
Berlín, 4 September 1751

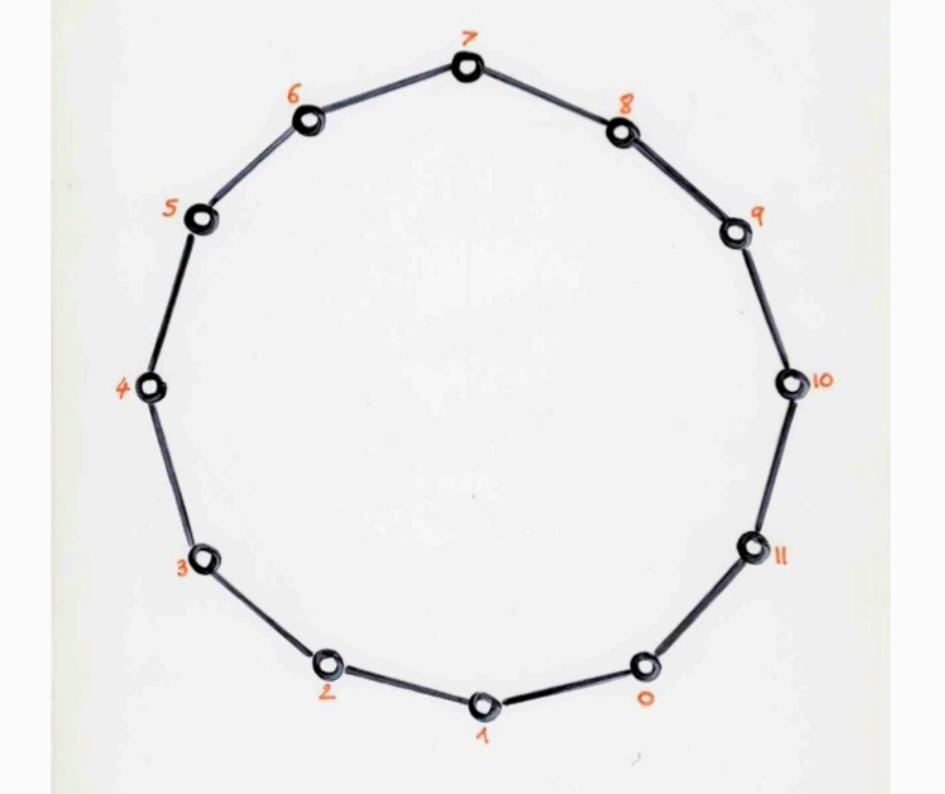




L'Arrei 1-2a-C. Hand wift. Sar . F. 2a 2a+5a+14a+42a+132a+ etc 1-20-V(1-40) 2+ 420 + 1020 + eh = 0=== 1 1+ =+==+ 1 + +=+ Sh. Pit to many laffin it for Hundig A boquefuil gas · Lu still offer the Spa finding 2" Non Boghoglan form. 175-Sept Berli

from triangulations to binary trees

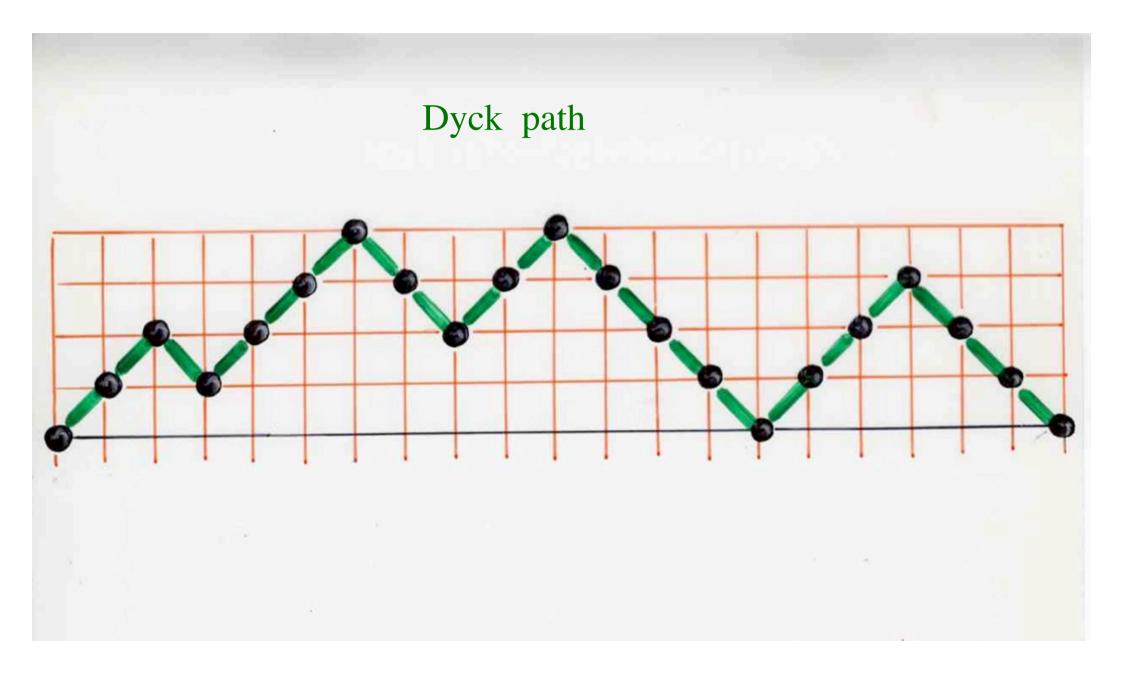




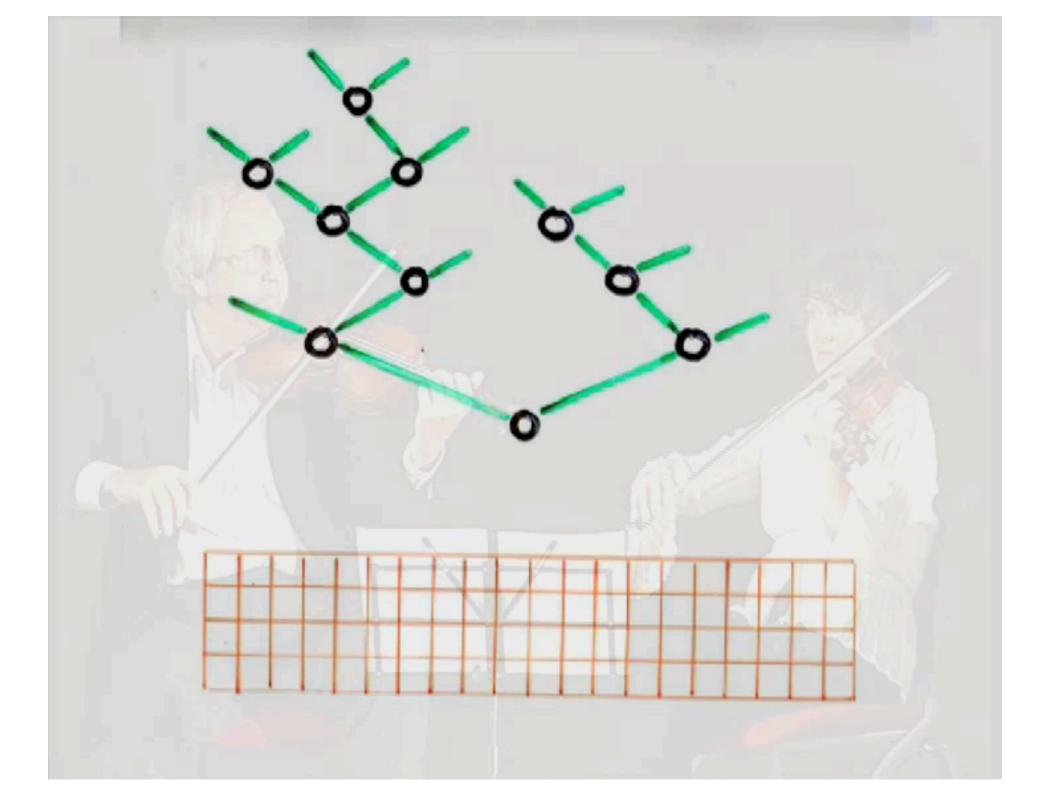
How to prove the relation between the distribution of Strahler numbers and Chebyshev polynomials ?

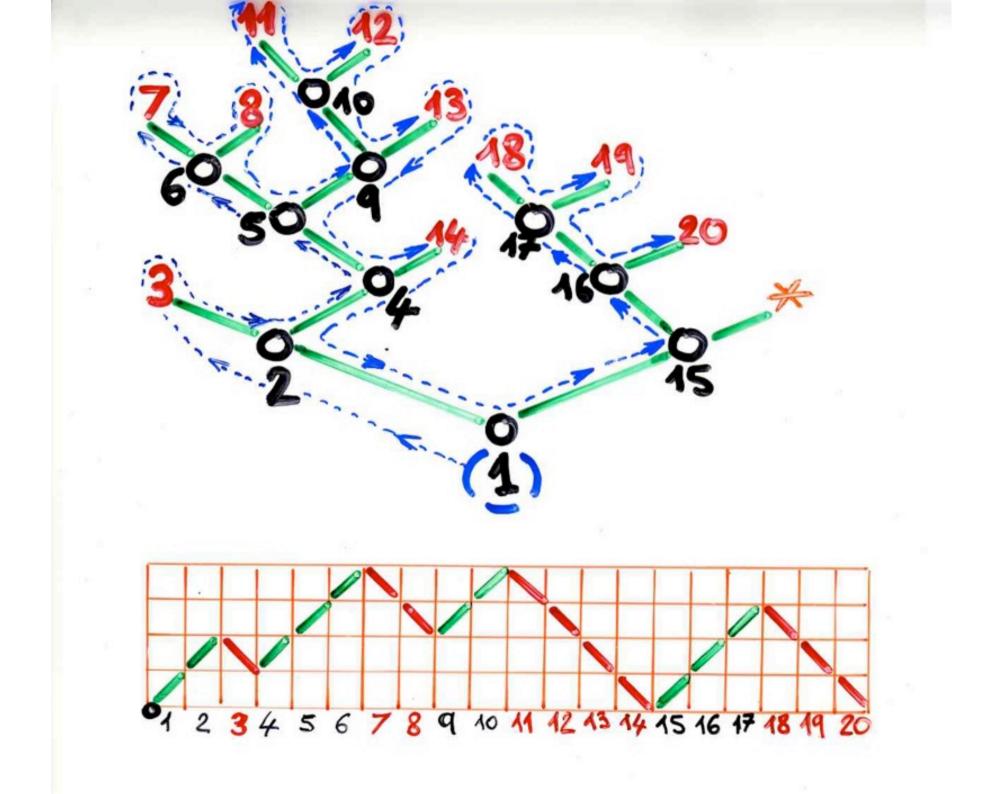
$$S_{k}(t) = \sum_{k \neq 0} S_{n,k} t^{n}$$

 $sin(n+1)\Theta = (sin\theta)U_n(cos\theta)$

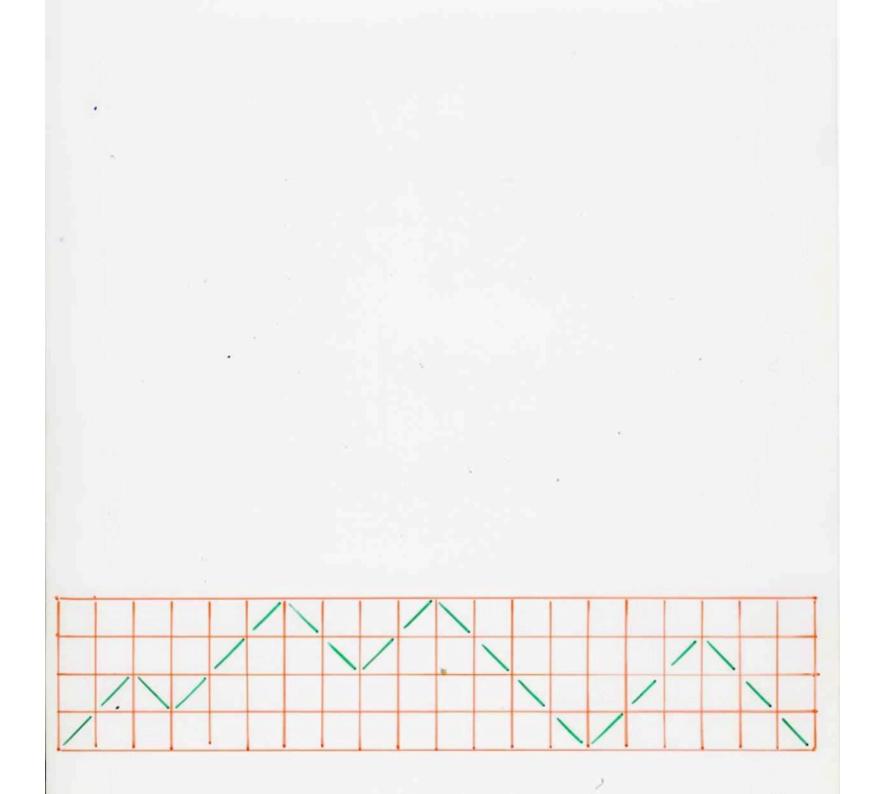


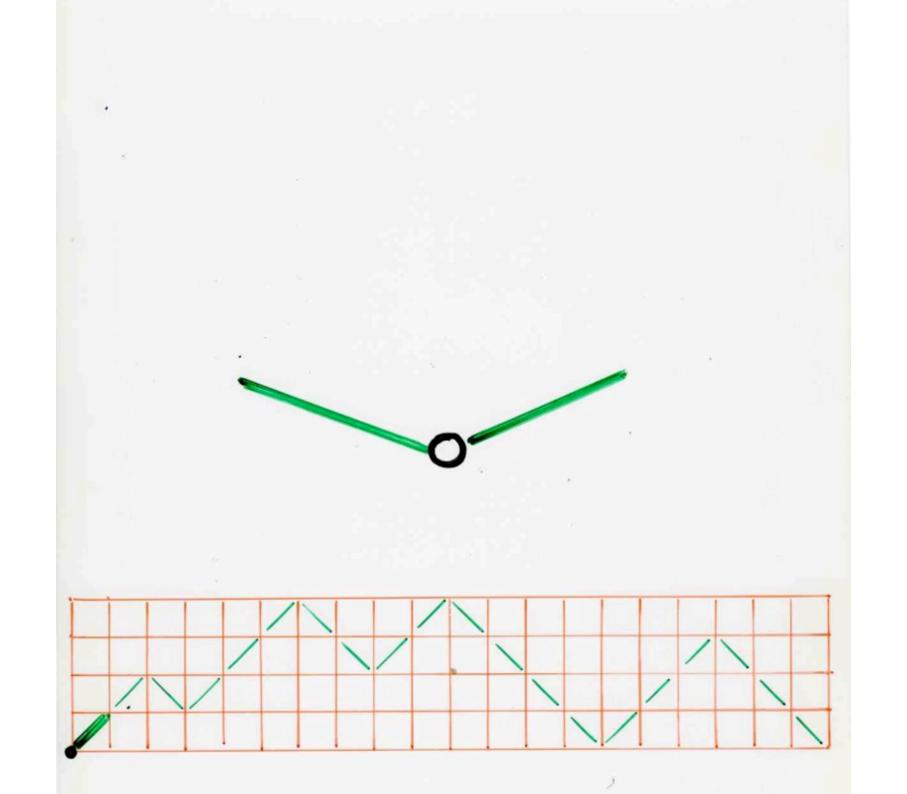
from binary trees to Dyck paths

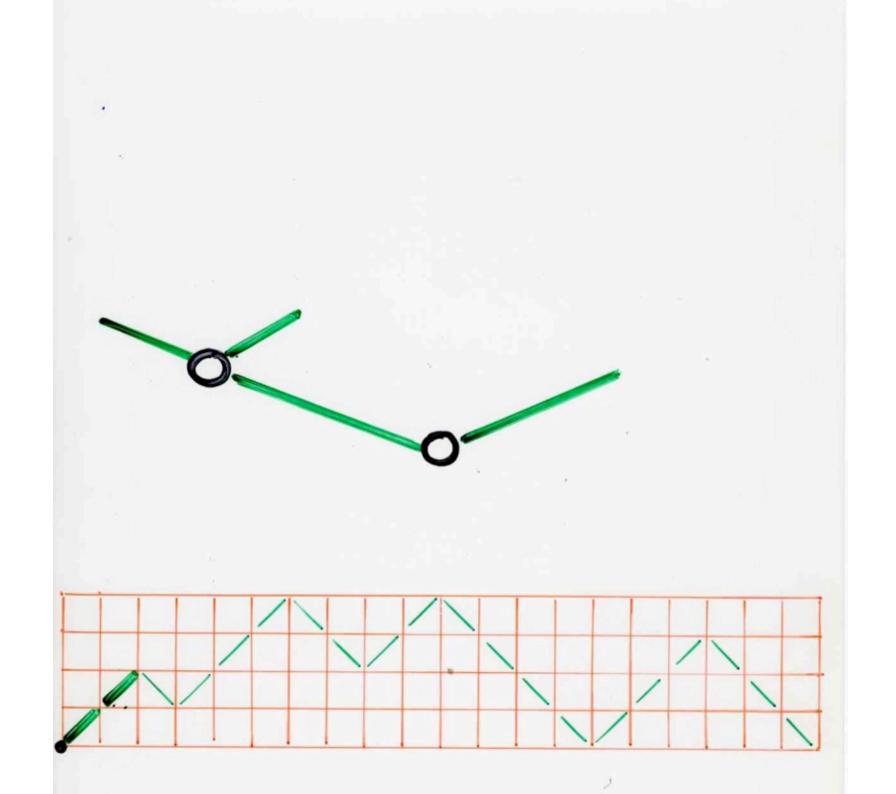


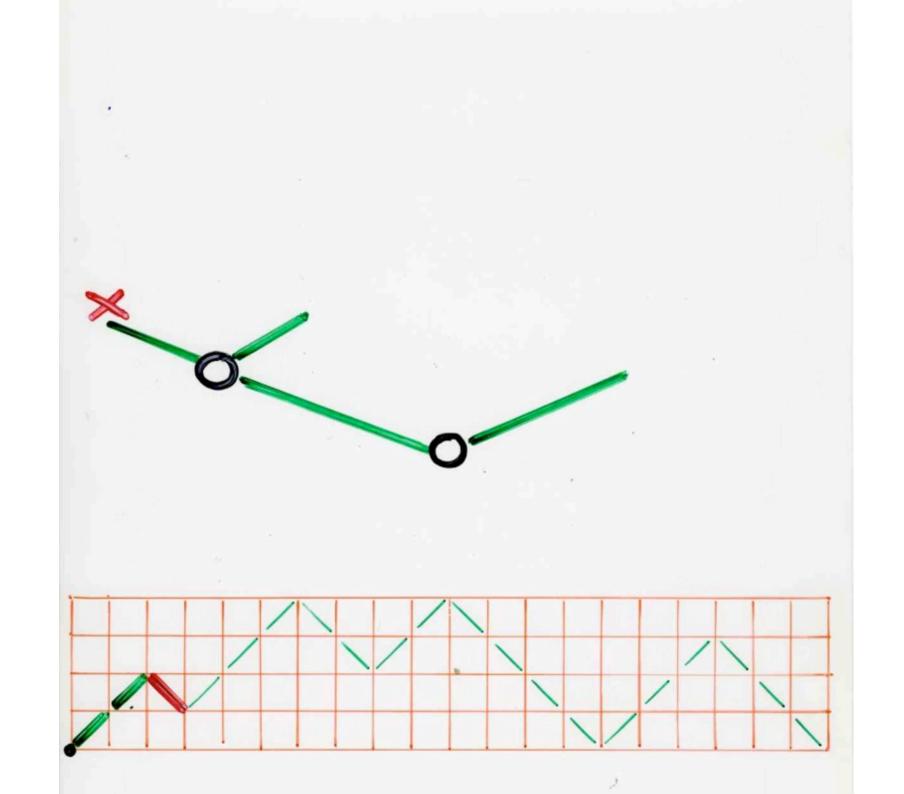


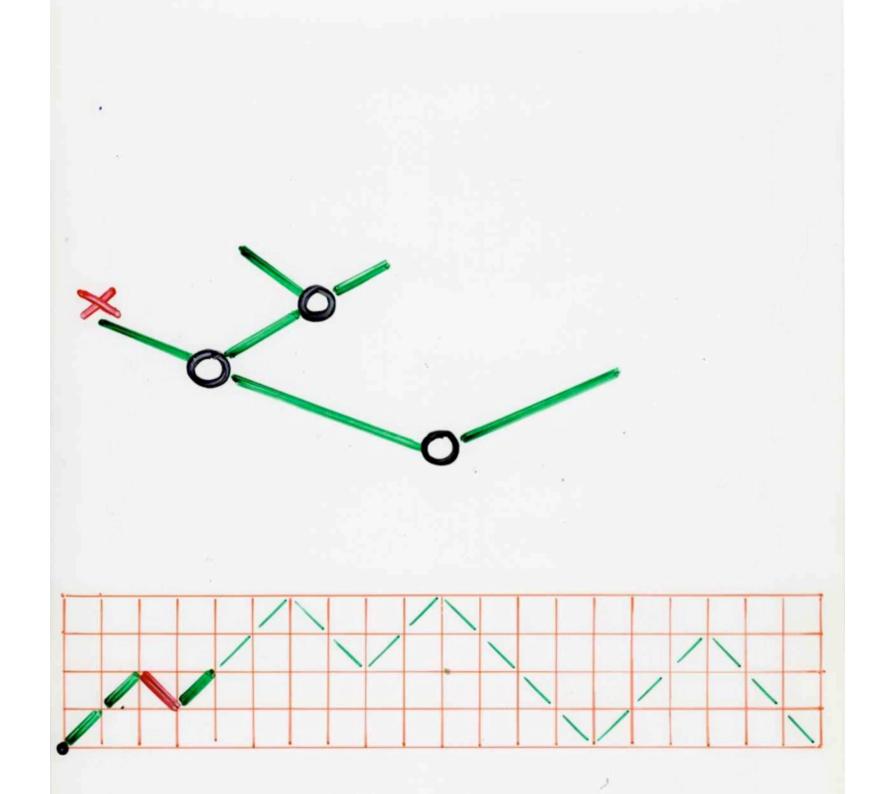
reciprocal bijection

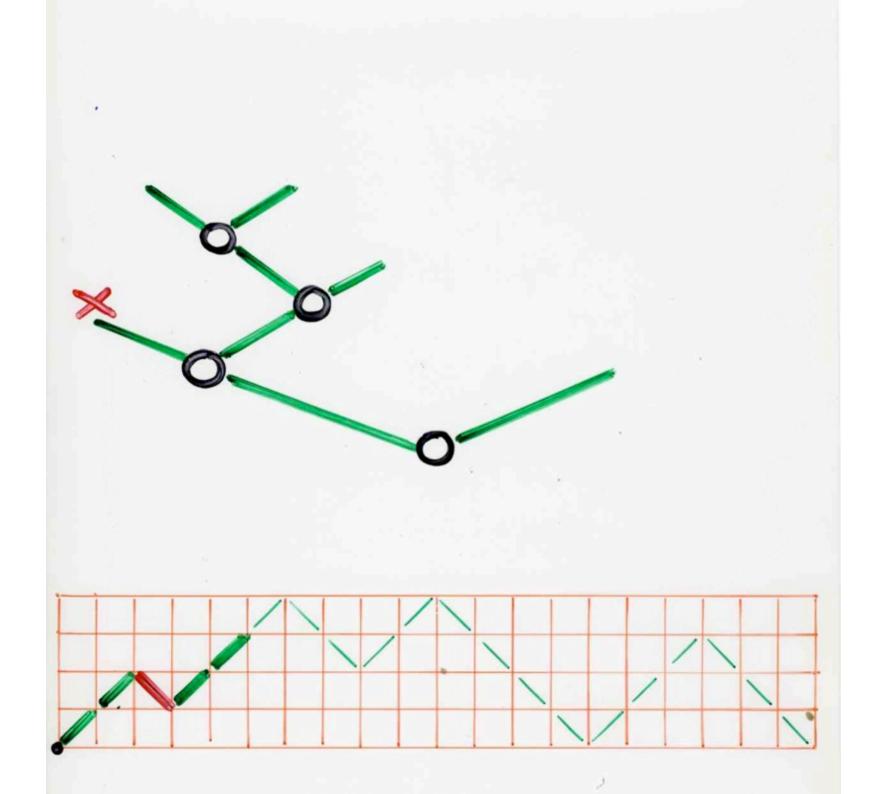


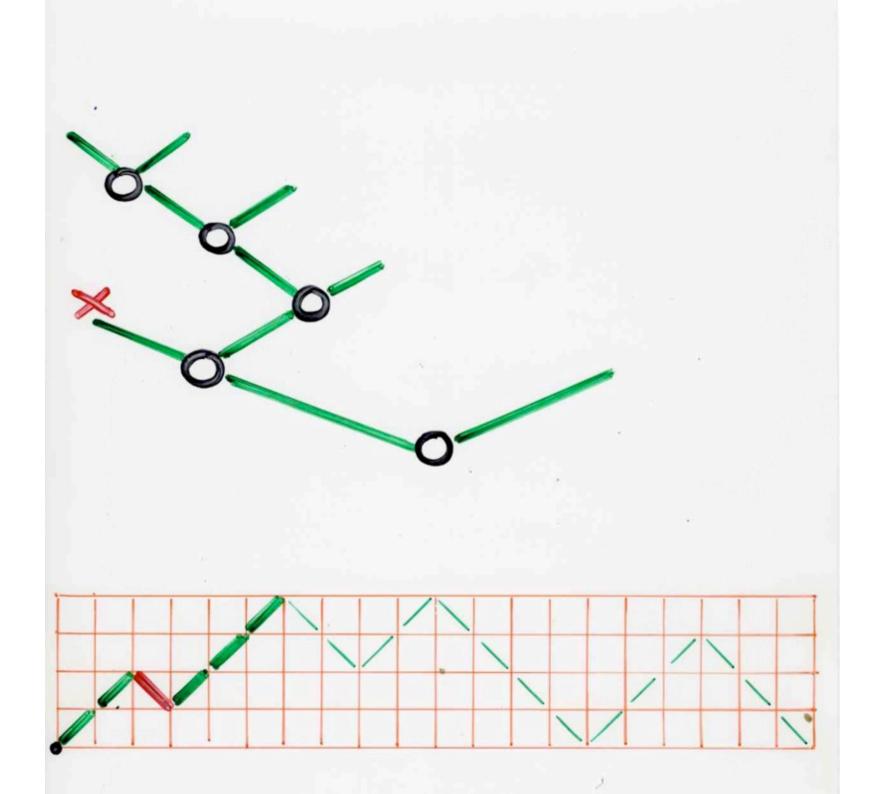


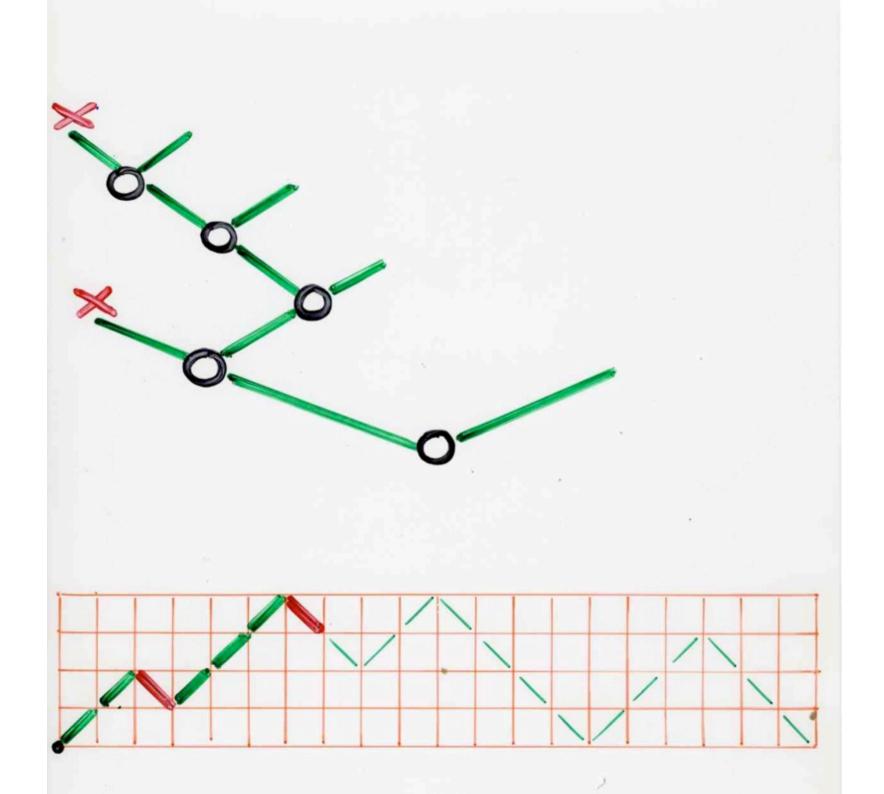


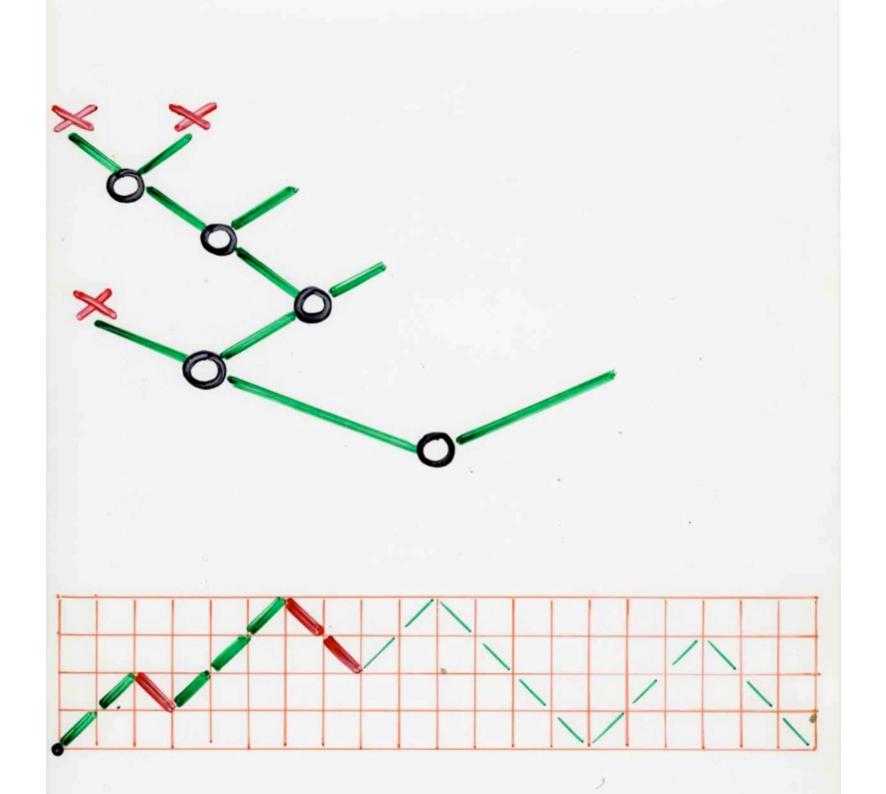


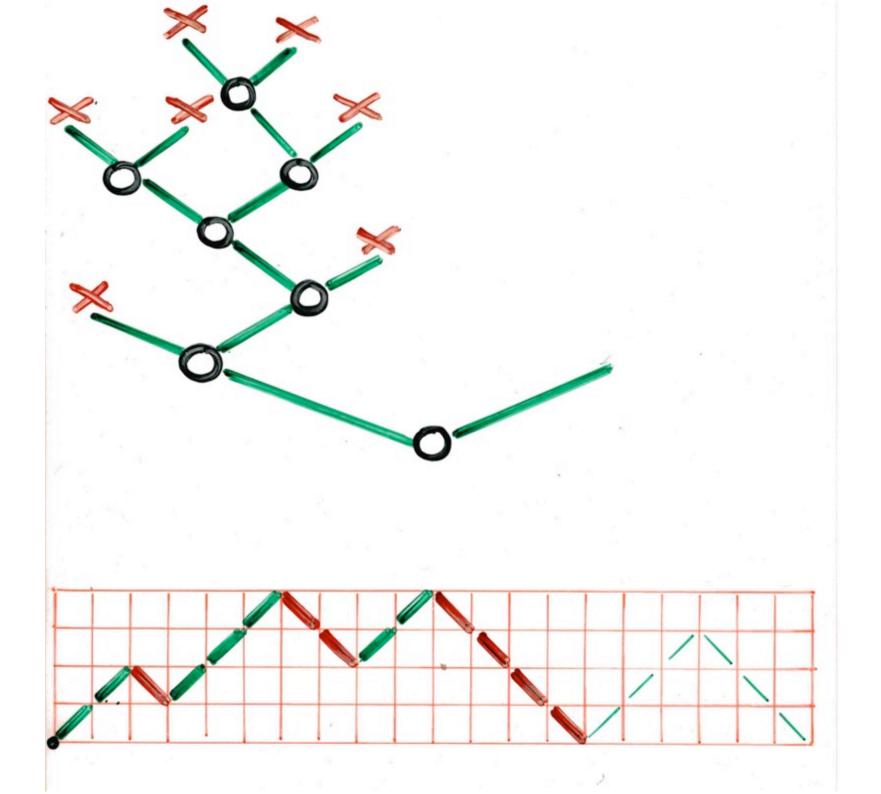


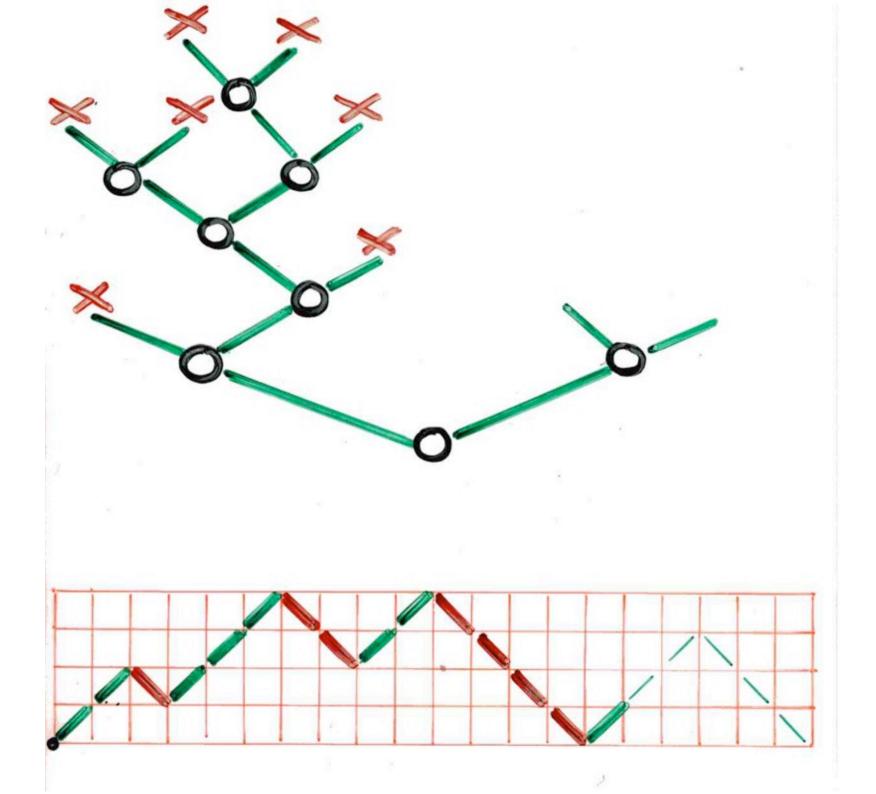


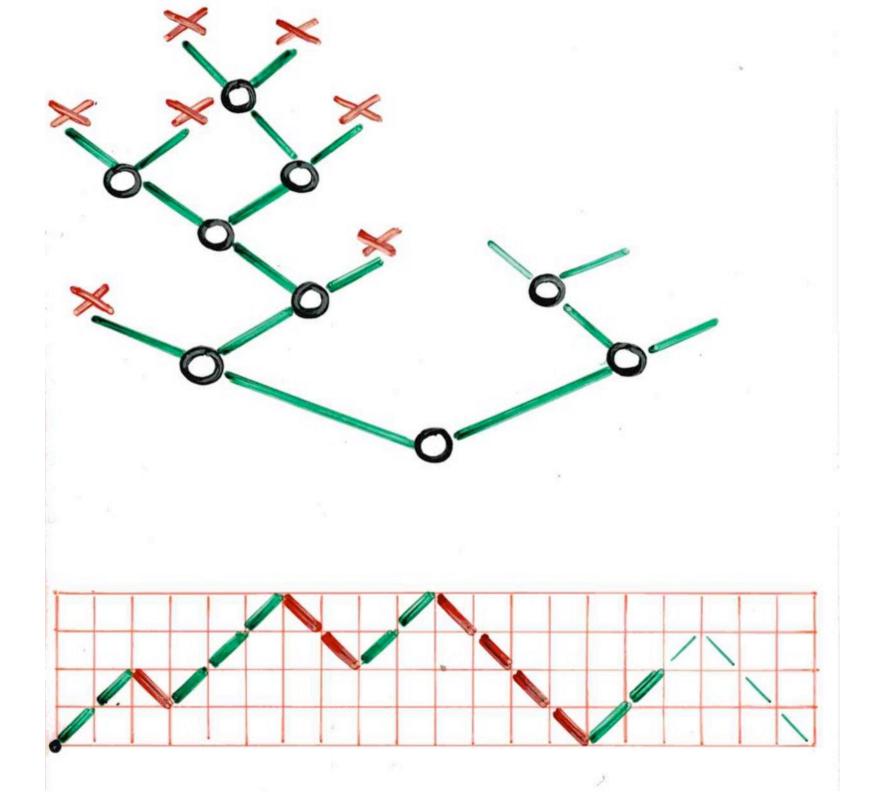


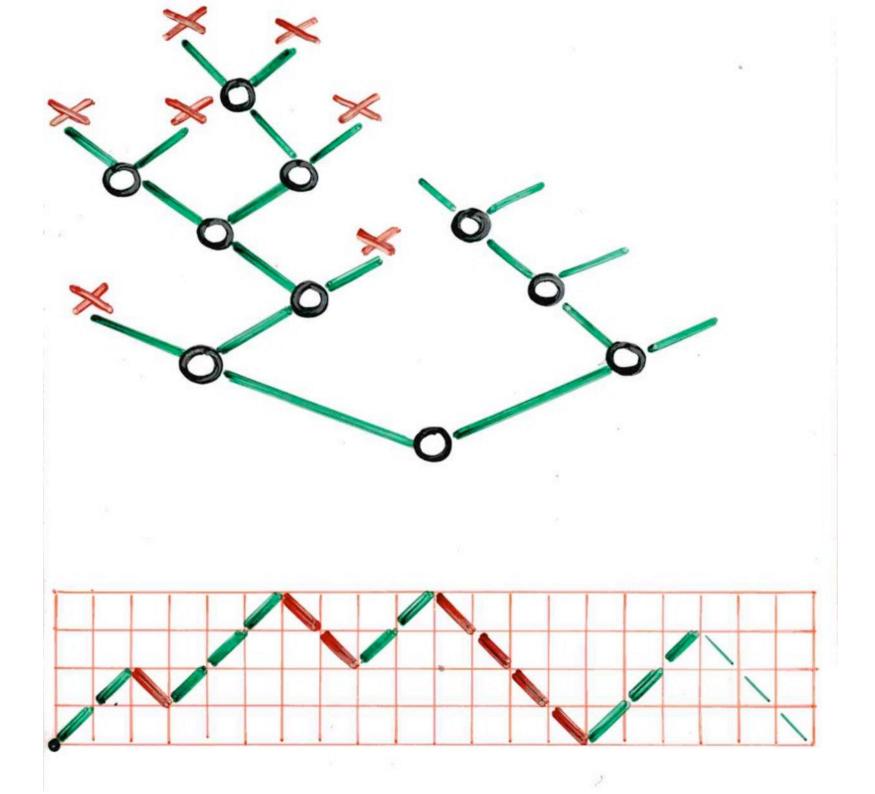


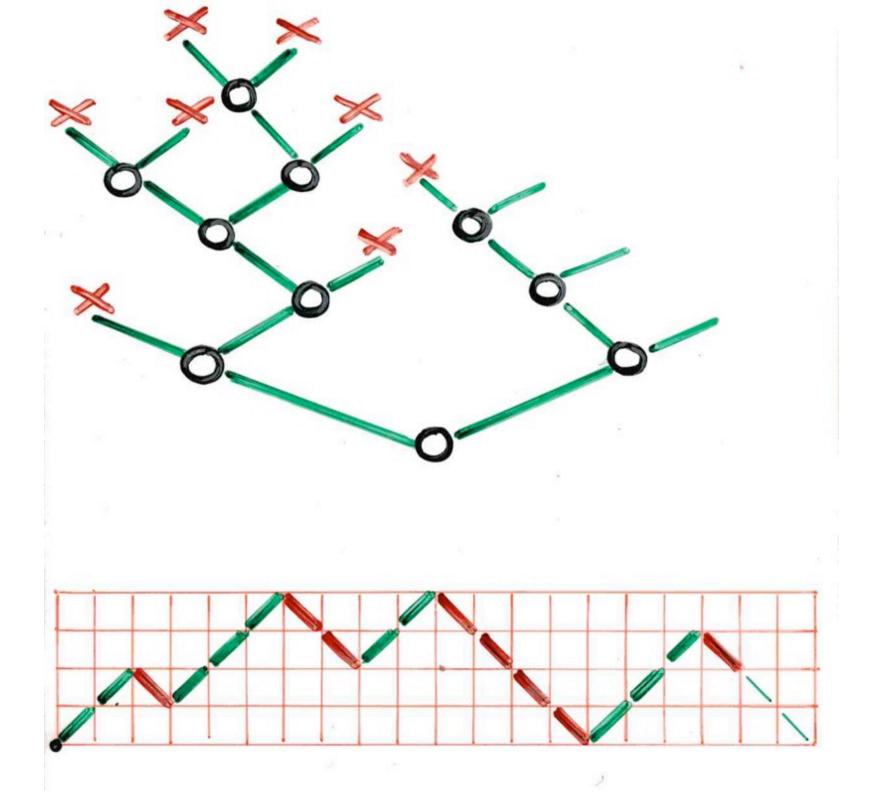


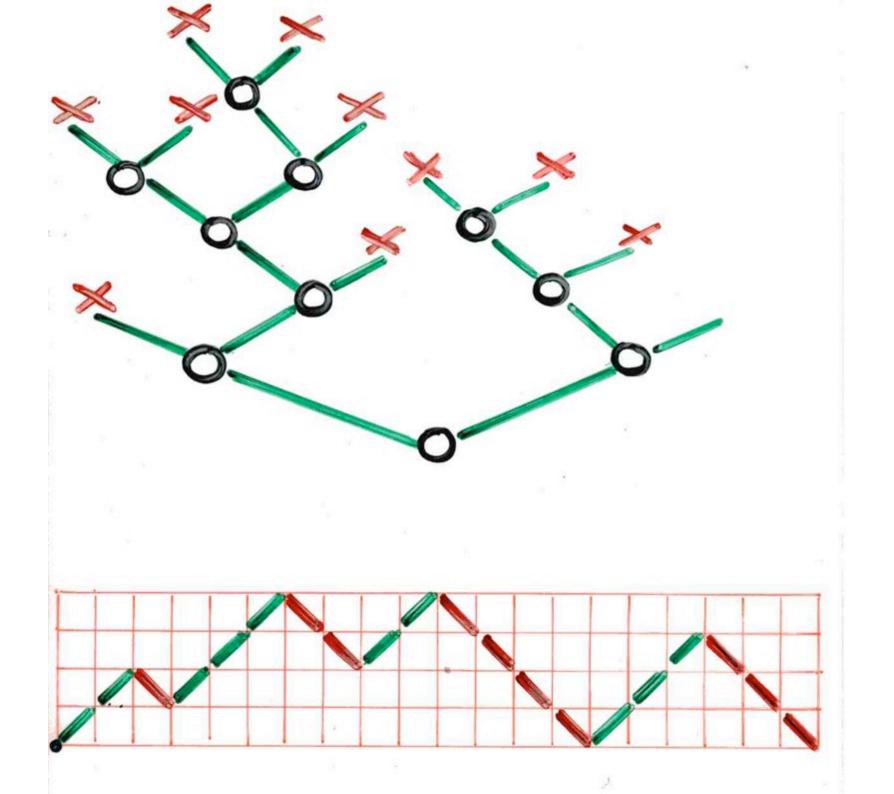


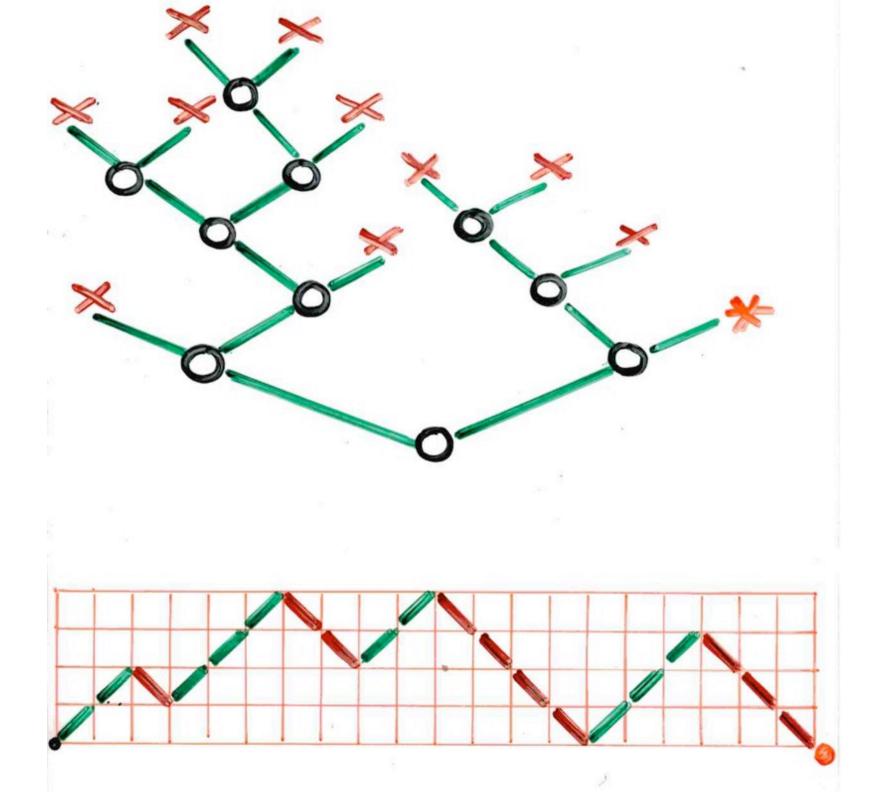




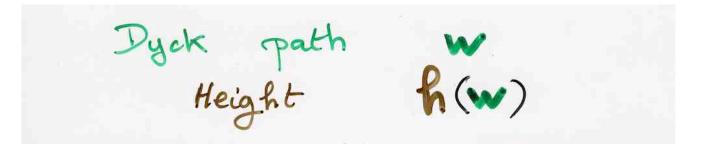


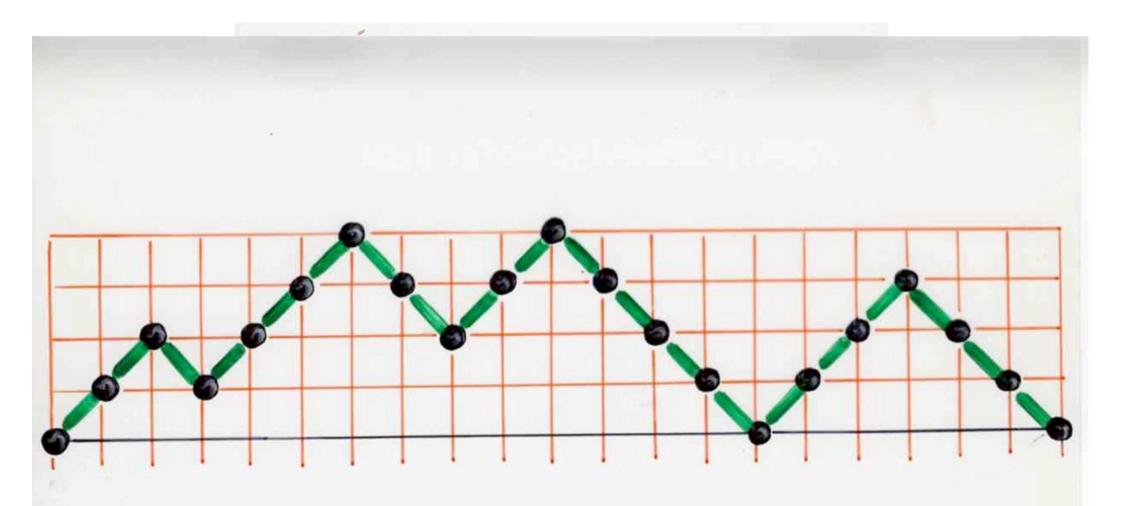




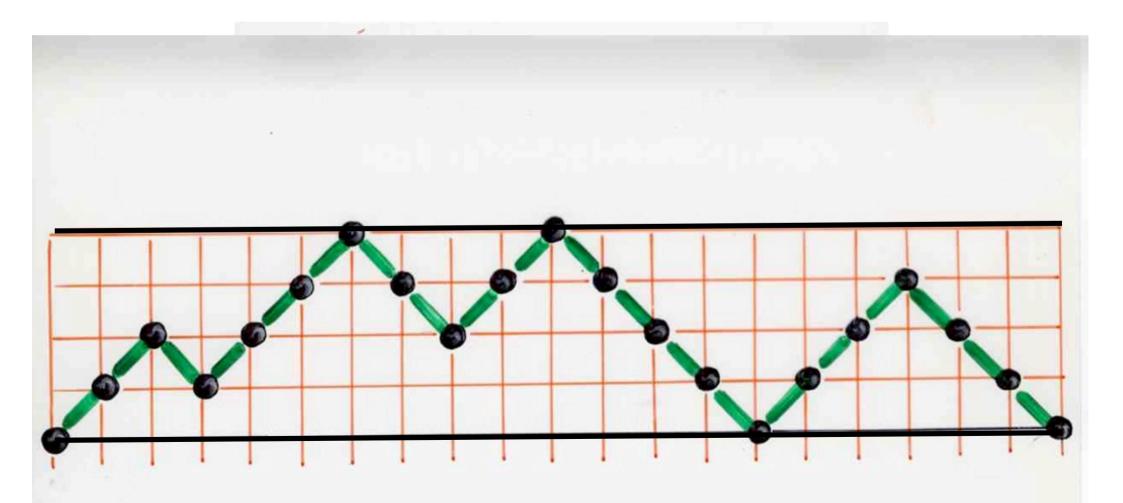


logarithmic height

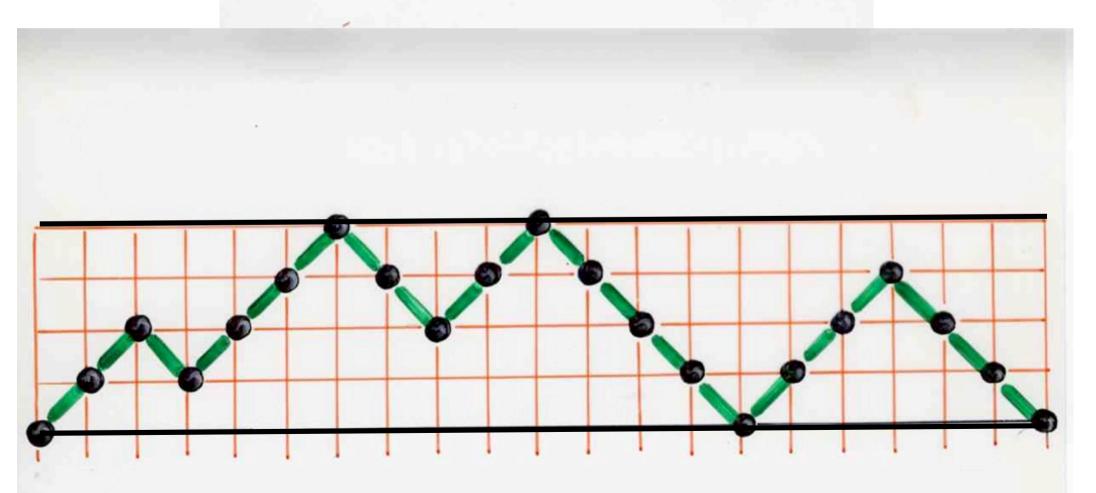




Dyck path w Height h(w) = 4



Dyck path w Height h(w) logarithmic height lh (w) = L log2 (1+h(w))]



(complete) binary trees Franson Dyck paths n (internal) vertices (1984) length 2n Strahler nb = k log. height lh(w) = k (complete)

same distribution !

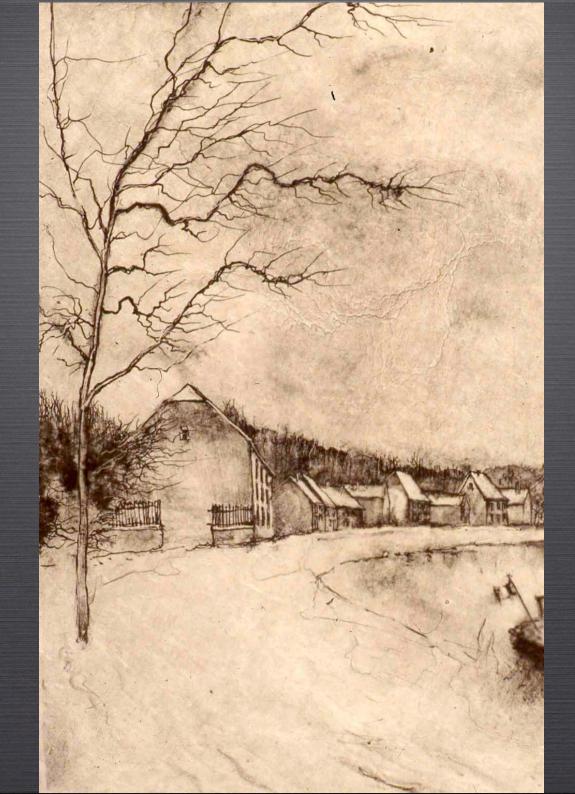
average Strahler number over binary trees n' vertices St = log n + f(log n) + Q(1) Flagiolet, Raoult, Vuillemin Kemp (1979) periodic

ramification matrices

or mathematical analysis for the shape of a branching structures

How to «measure» the shape of a tree?

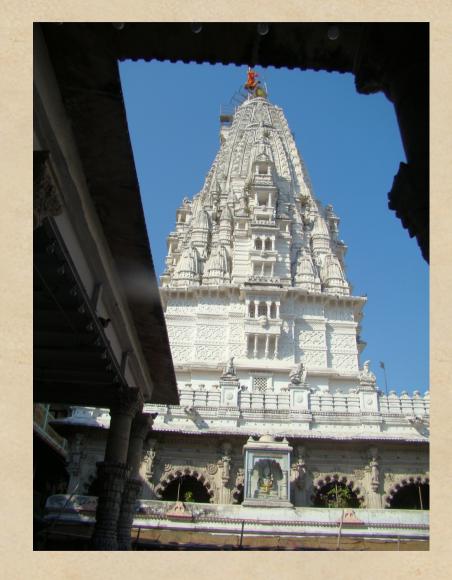
Bernard Gantner



ARBRES AUX CORBEAUX

LOUVRE MUSEUM

ramification matrices in physics



digitous fingering

DLA

Diffusion Limited Agregation

Classification of Galactograms with ramification matrices P. Bakic, M. Allert, A. Maidment (2003) Digital mammography

Academic Radiology, Vol 10, No 2, February 2003

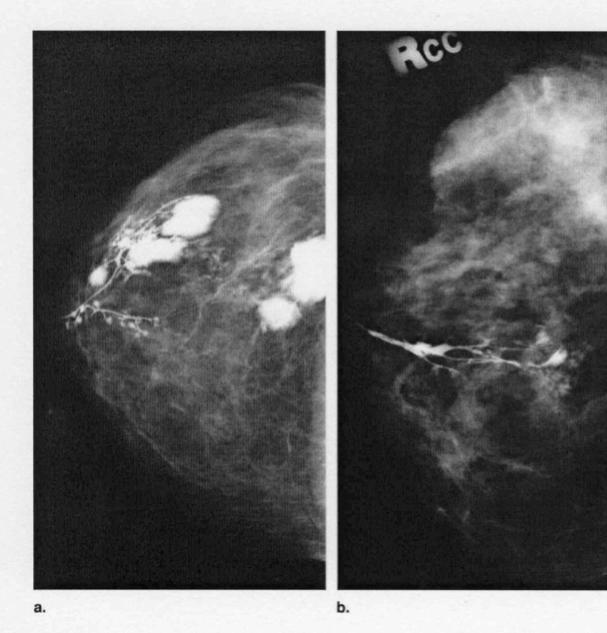


Figure 4. Two examples of galactograms that have been correctly classified by means of R matrices. (a) Galactogram with no reported findings (patient age, 45 years; right CC view; $r_{3,2} = 0.5$ and $r_{3,3} = 0.19$). (Large bright regions seen in this galactogram are due to extravasation, which did not affect the segmentation of the ductal tree.) (b) Galactogram with a reported finding of cysts (patient age, 55 years; right CC view; $r_{3,2} = 0.33$ and $r_{3,3} = 0.67$).

Academic Radiology, Vol 10, No 2, February 2003

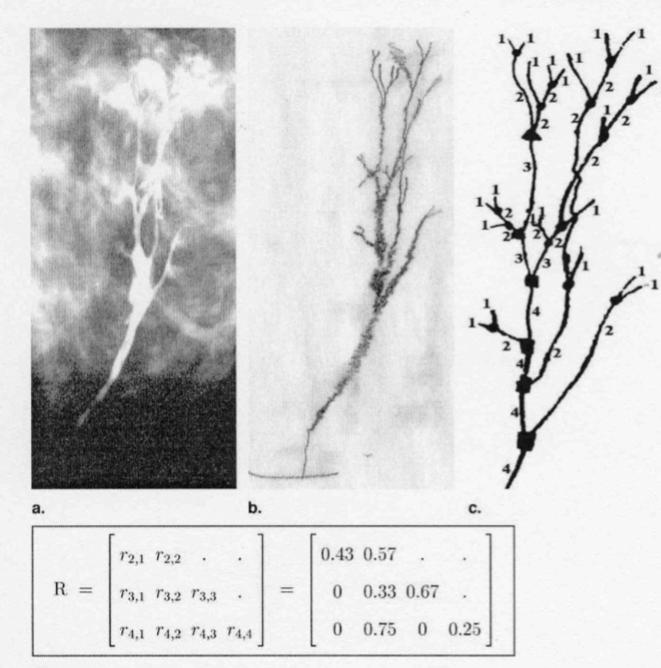
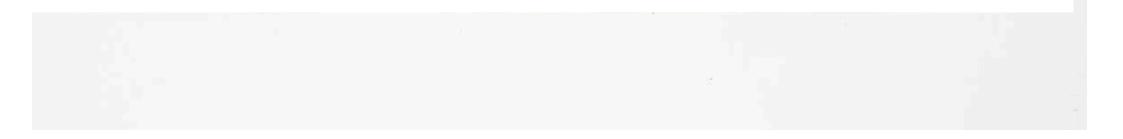


Figure 1. Segmentation of a ductal tree, showing (a) part of a galactogram with a contrast-enhanced ductal network, (b) the manually traced network of larger ducts from the contrast-enhanced portion of the galactogram, (c) numeric labeling of branches in the ductal network, and (d) the R matrix computed from the branching pattern. The dots, triangles, and squares denote branching points of different levels of the tree.

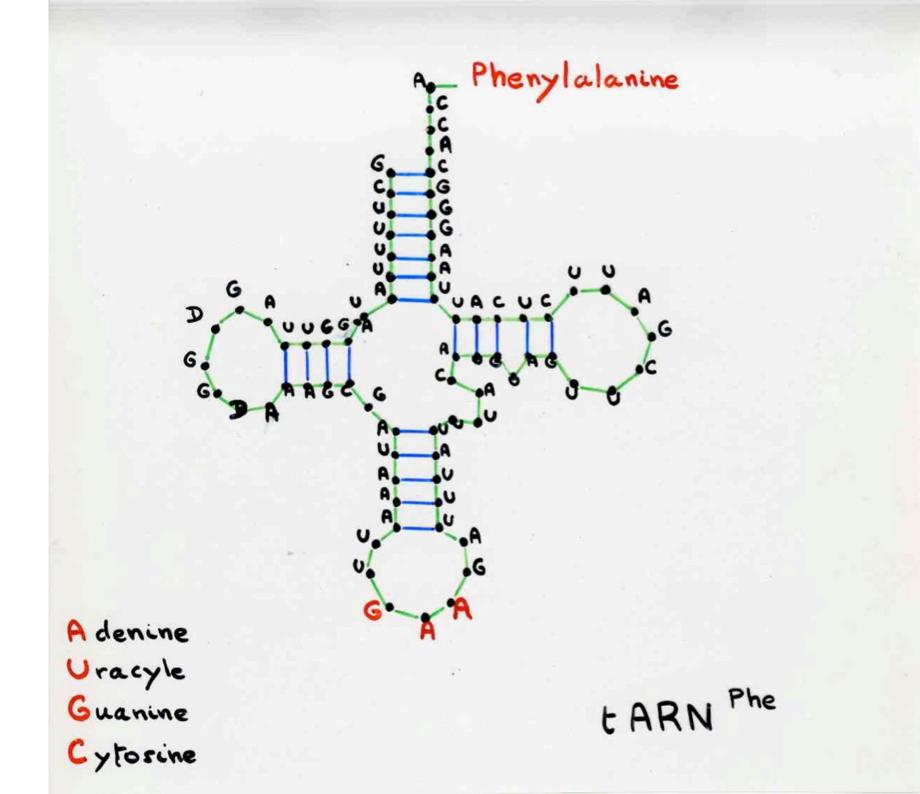
visualization of information

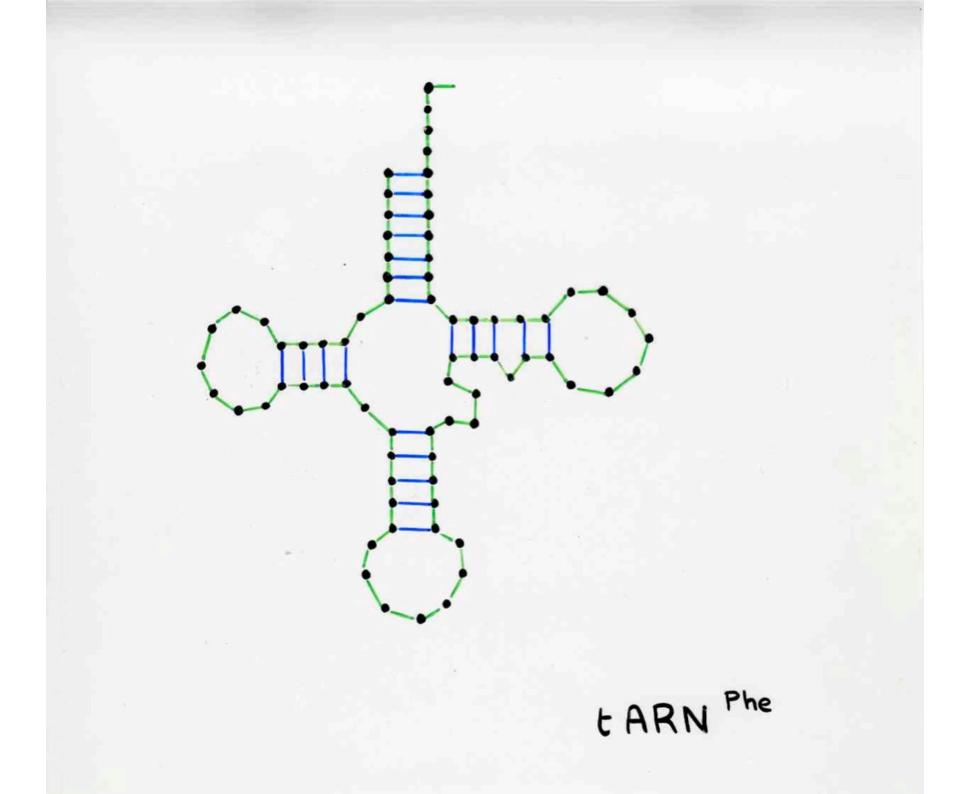
Visualization of information for very large graphs

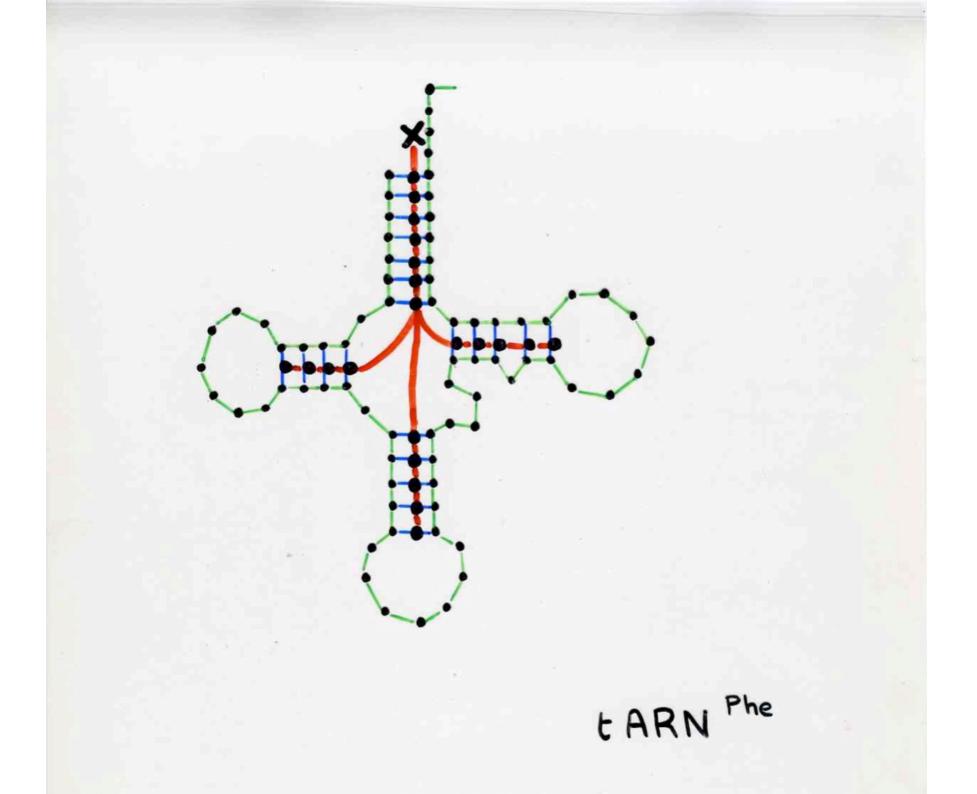
extension of Horton-Strahler analysis for graphs

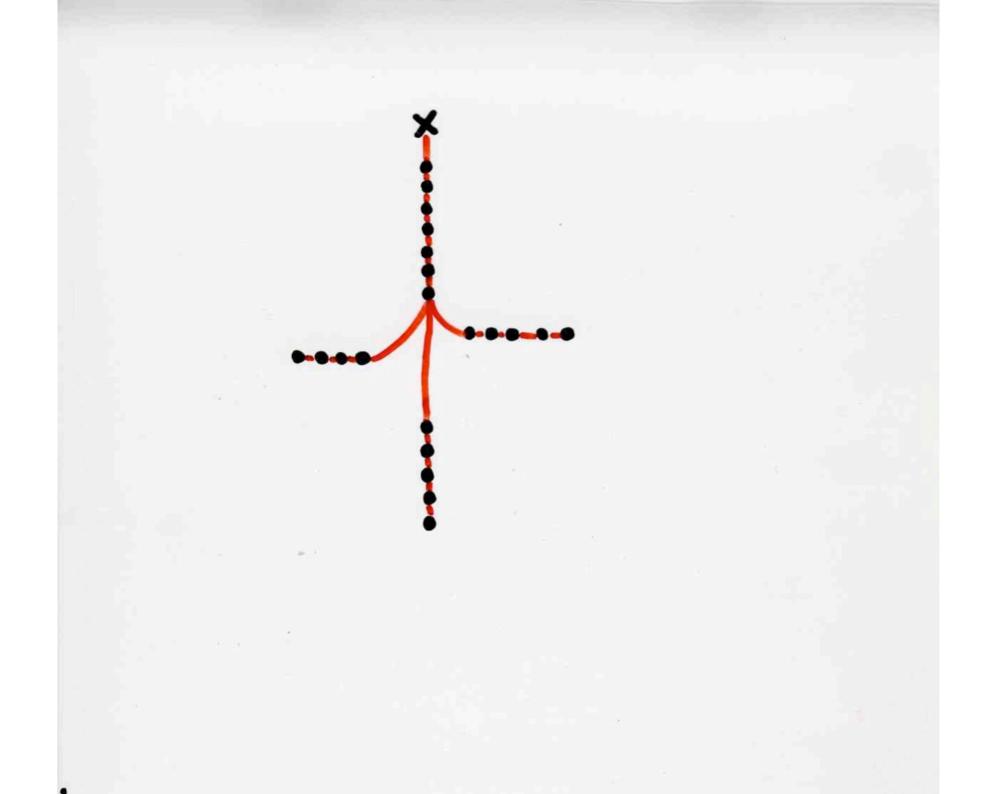


trees in molecules









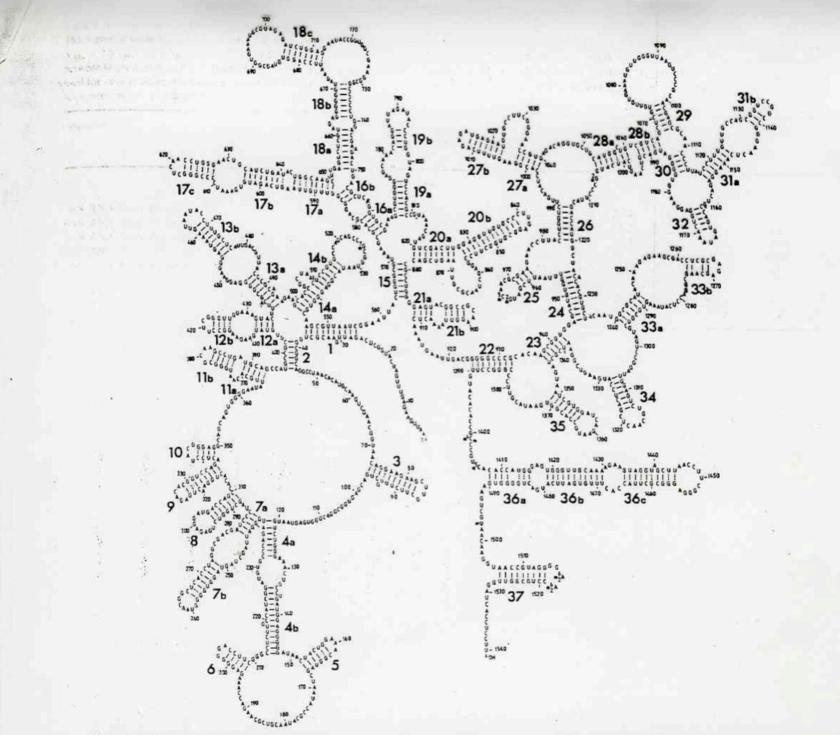


Fig. 1. Secondary structure model of the 16-S RNA from E. coli. This model has been fully described elsewhere [18]. The various secondary structure motifs are numbered for reference. Base-pairings 2 and 23 are included in this up-dated scheme and slight modifications have been introduced into helices 18b and 33b

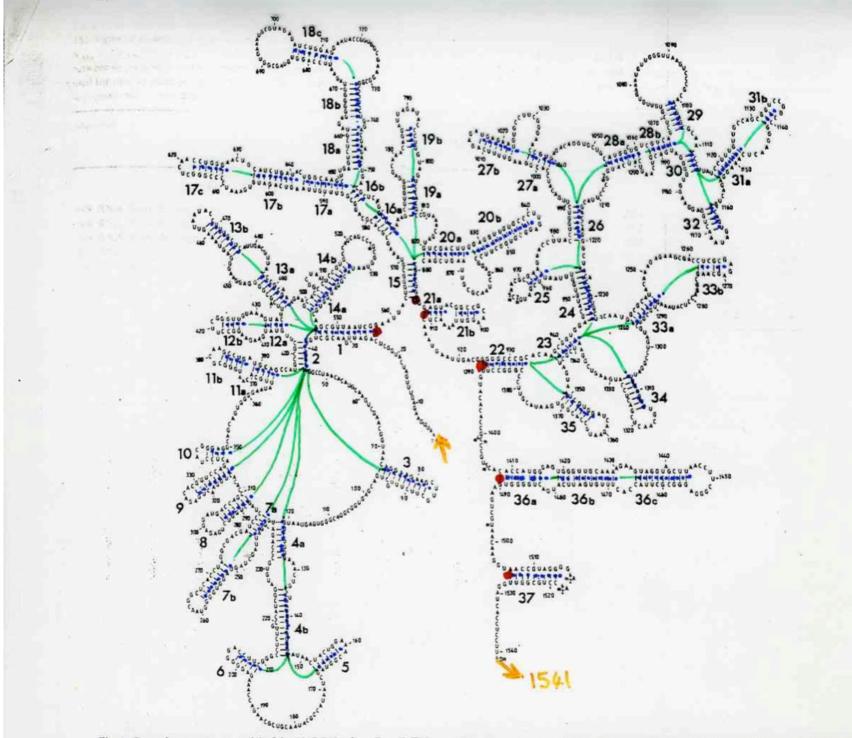
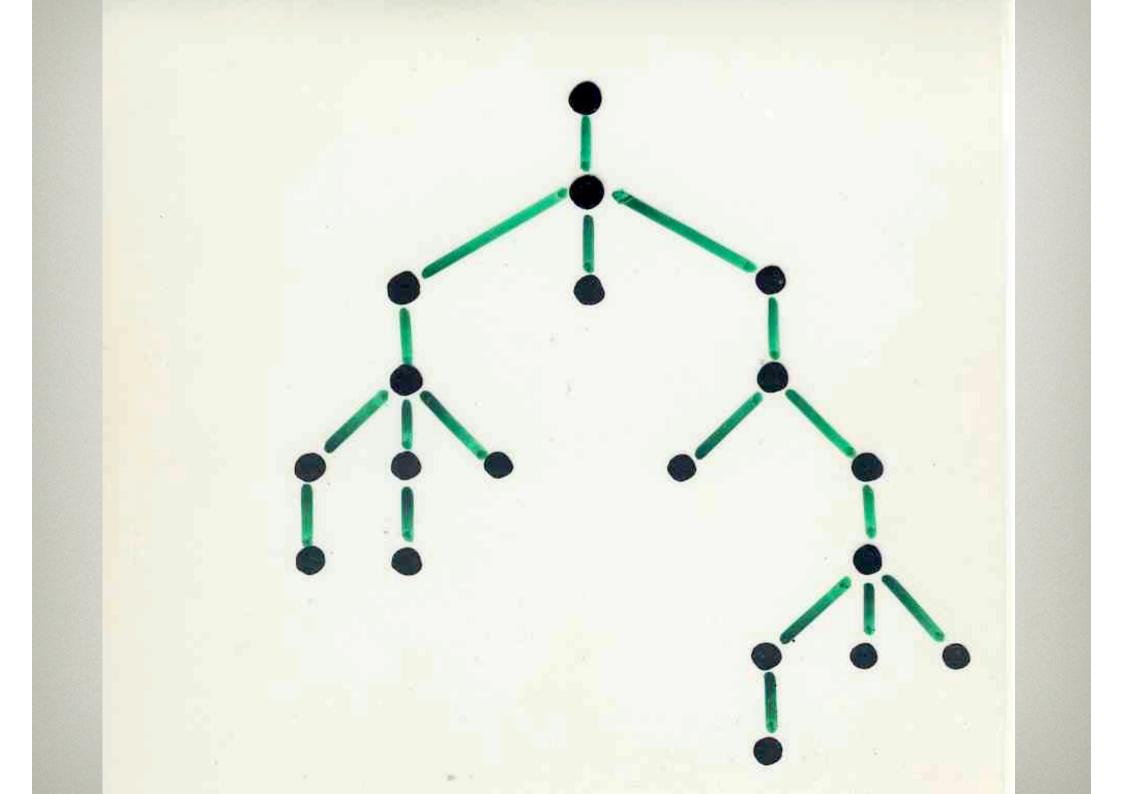
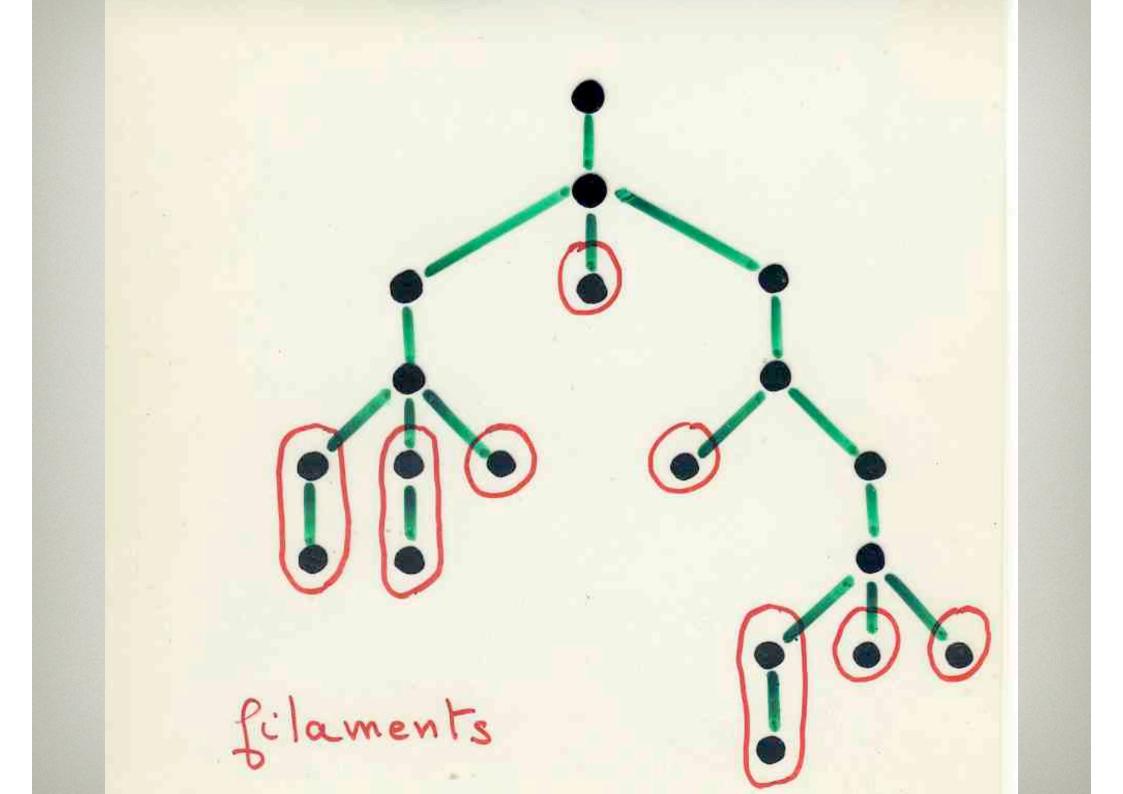


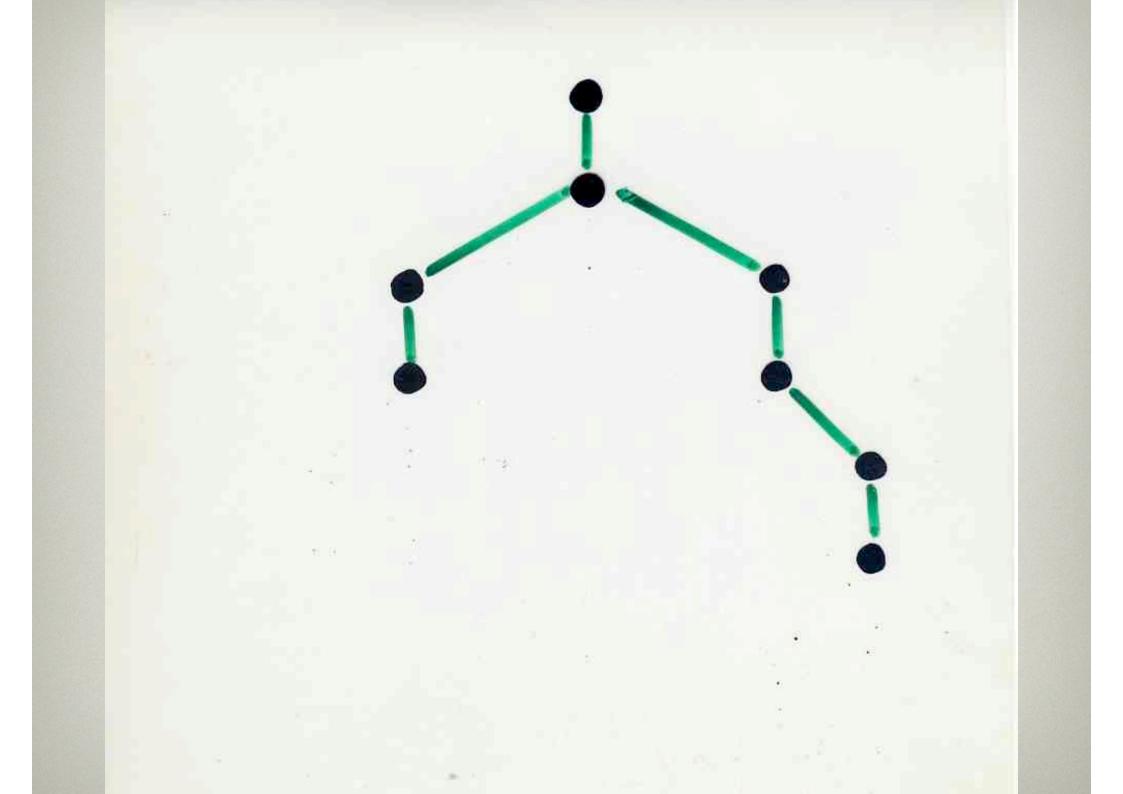
Fig. 1. Secondary structure model of the 16-S RNA from E. coli. This model has been fully described elsewhere [18]. The various secondary structure motifs are numbered for reference. Base-pairings 2 and 23 are included in this up-dated scheme and slight modifications have been introduced into helices 18 b and 33 b

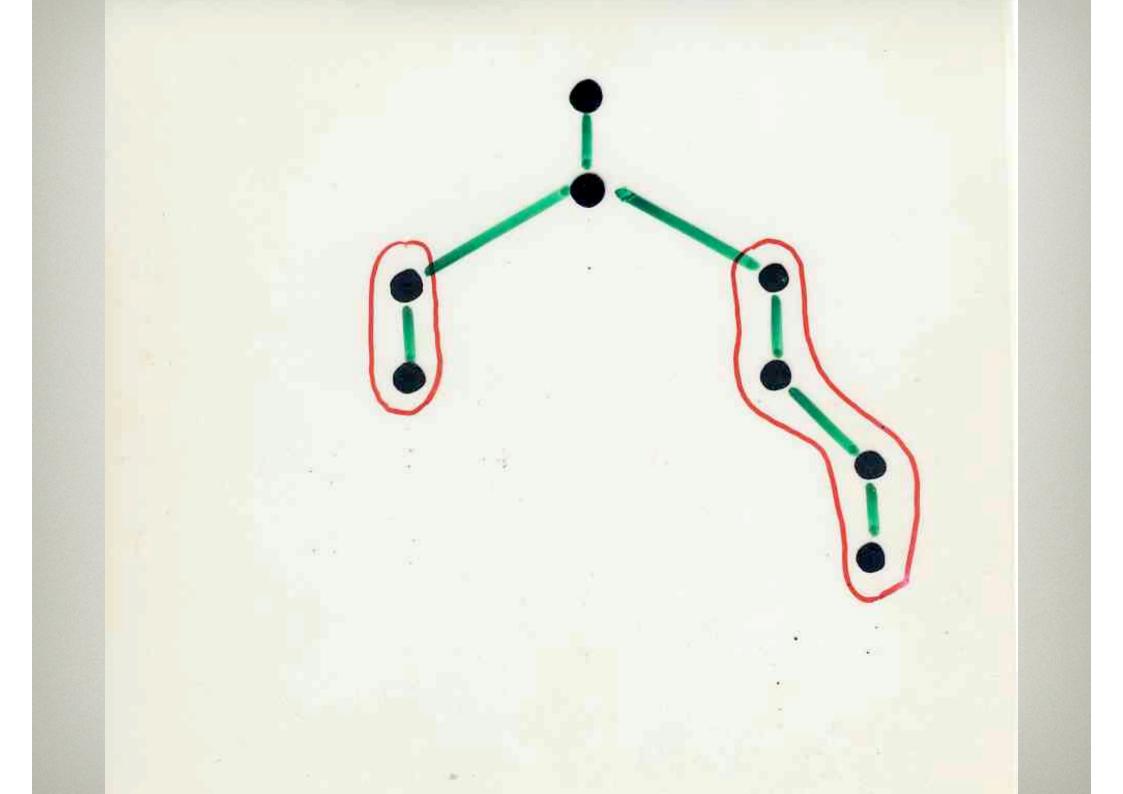
«complexity» or «order» of a molecule

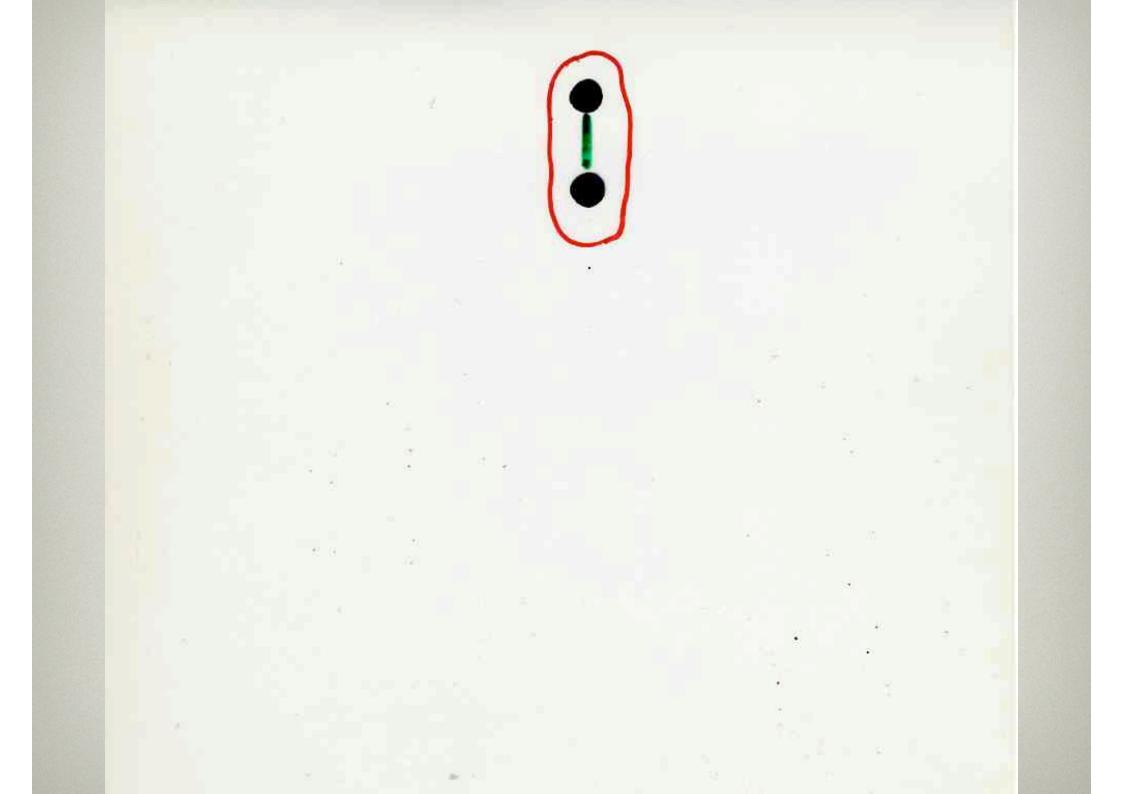
M. Waterman

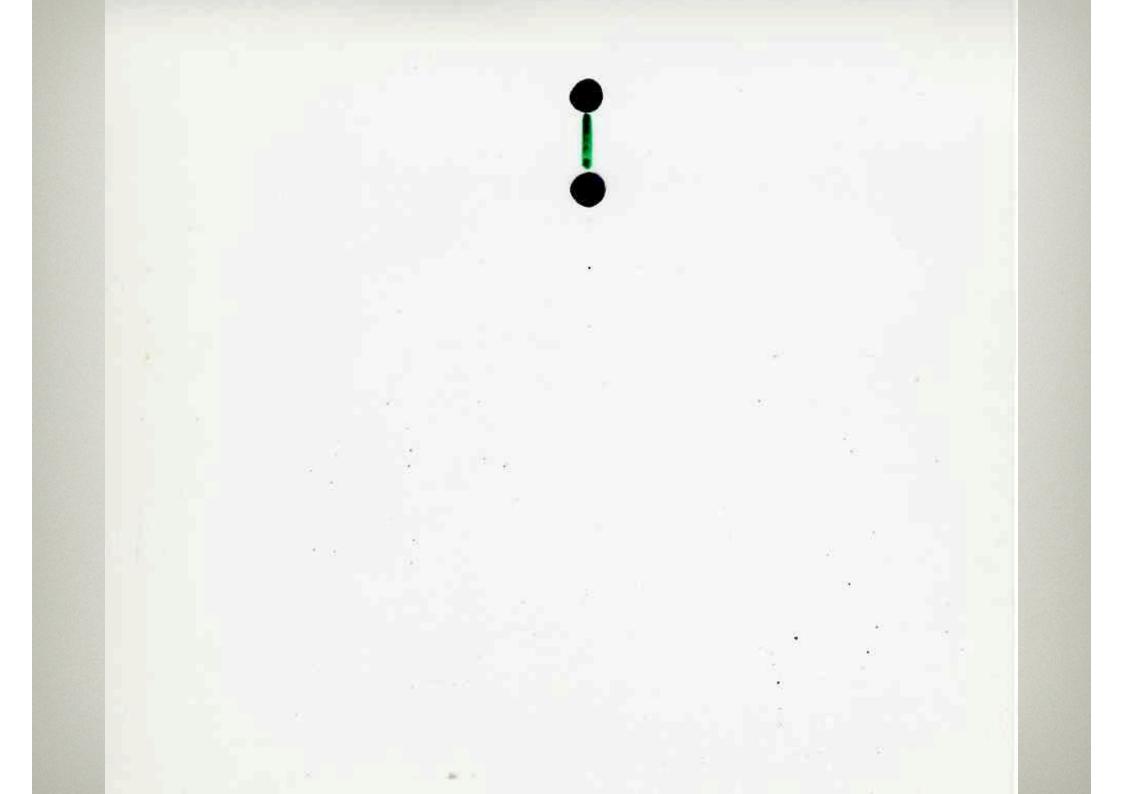


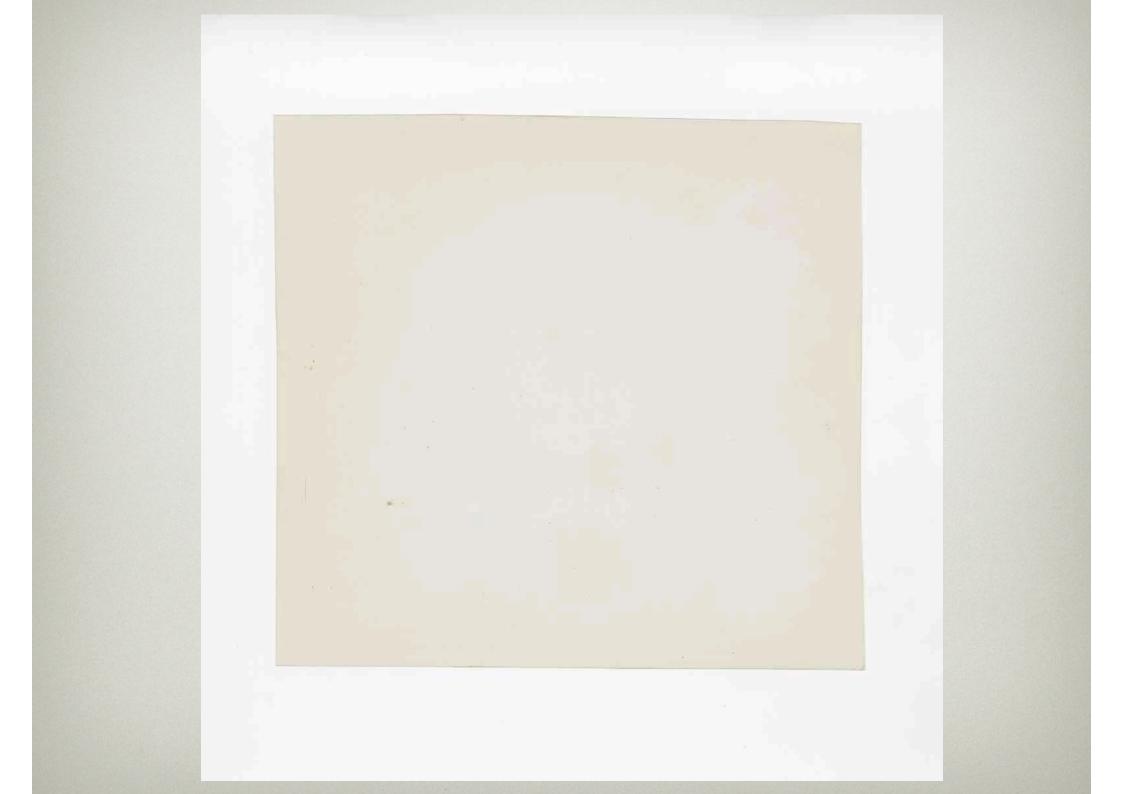


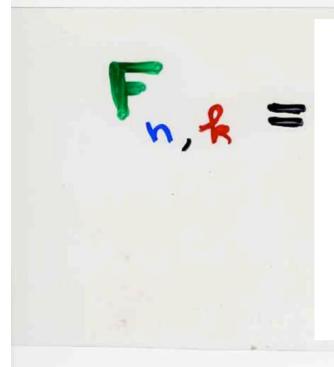










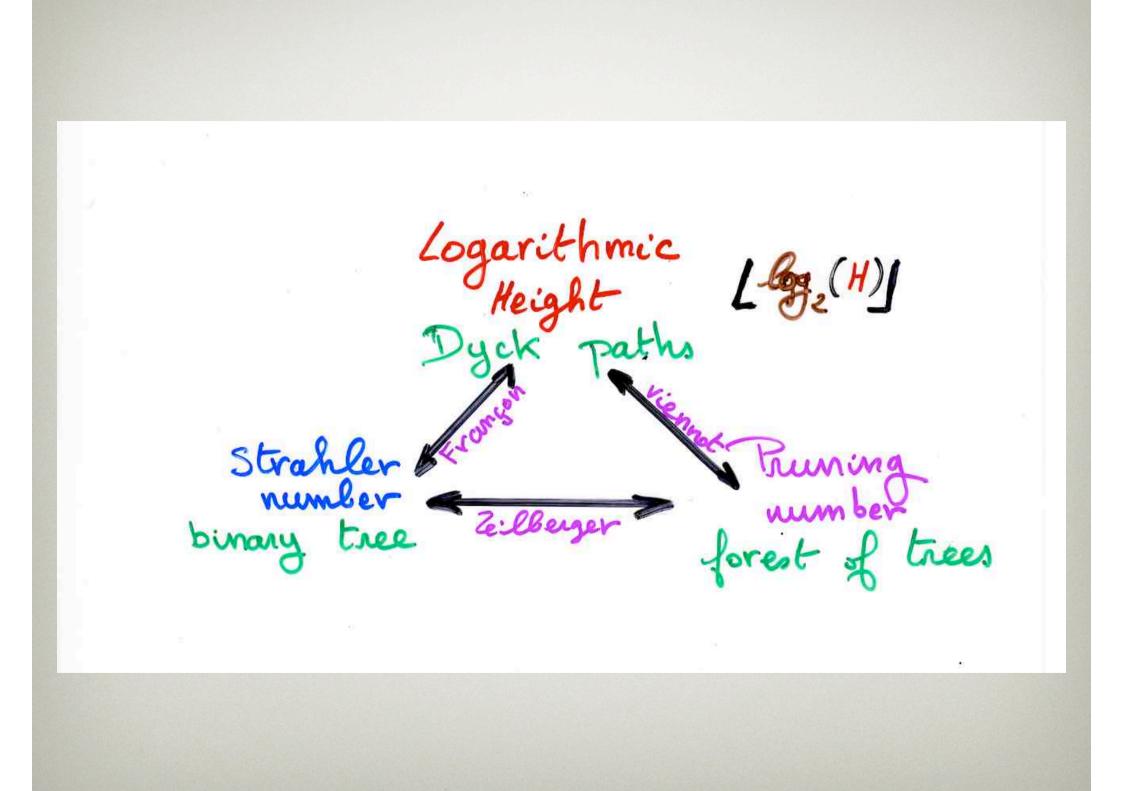


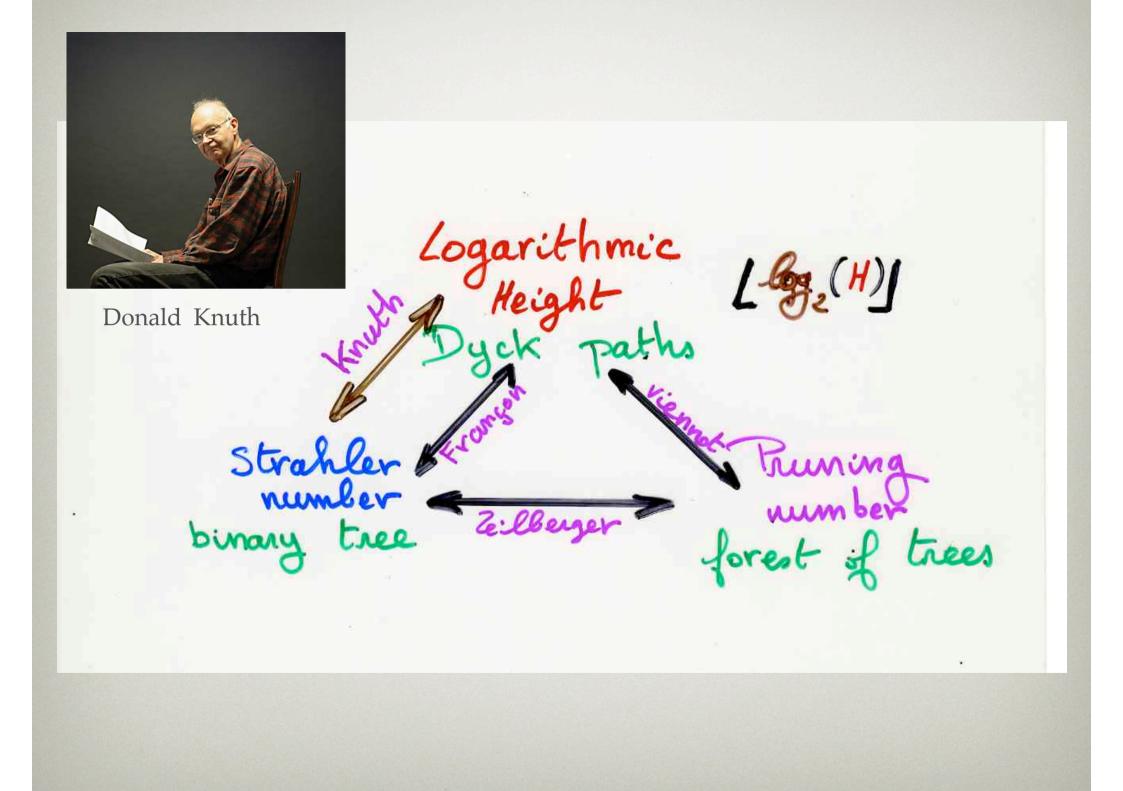
number of forest of trees with n vertices and order k

Fr, k =

number of forest of trees with n vertices and order k

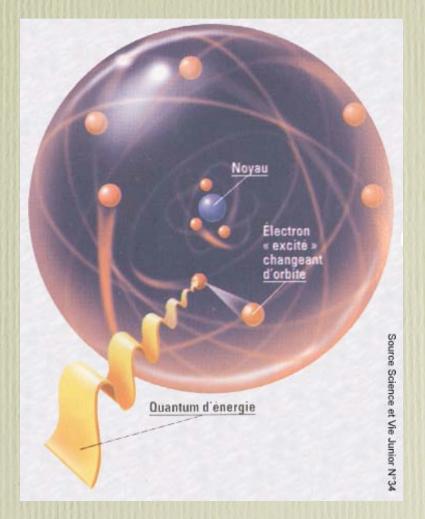
again again same same distribution ! X. V. (1985) (2001) D. Zeilberger (1985)





The infinitely small trees in the particles of light ?

the quantum world

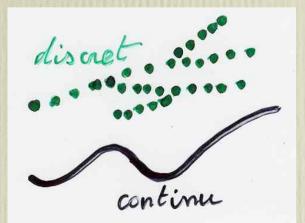


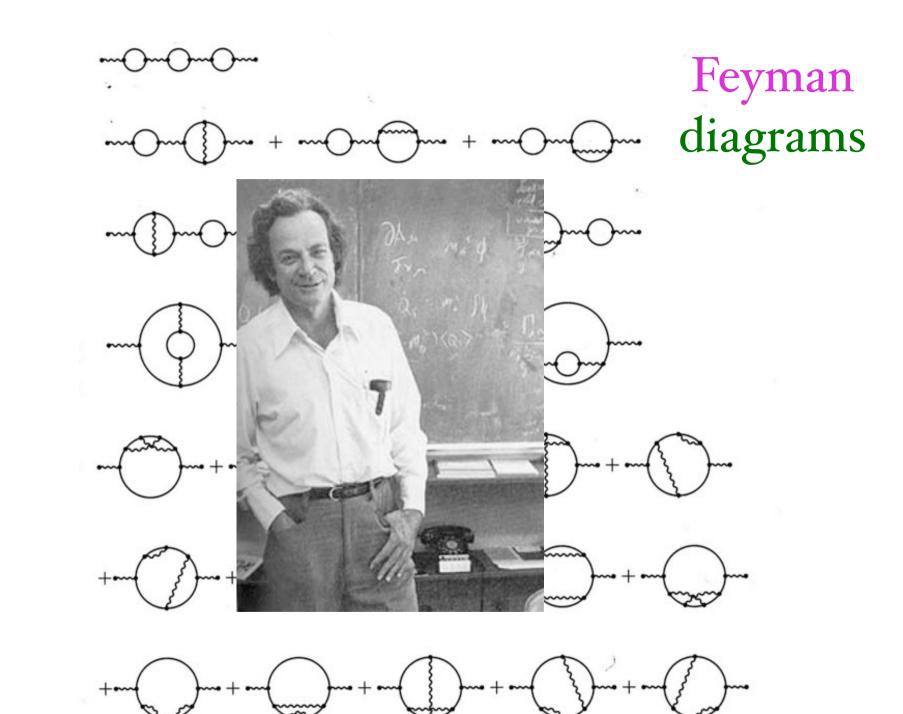
quantum mechanics very far from common intuition

particle: tendancy to exist ...

the famous Schrödinger cat, dead and alive at the same time

space, time, mater, energy: continuous or discrete?





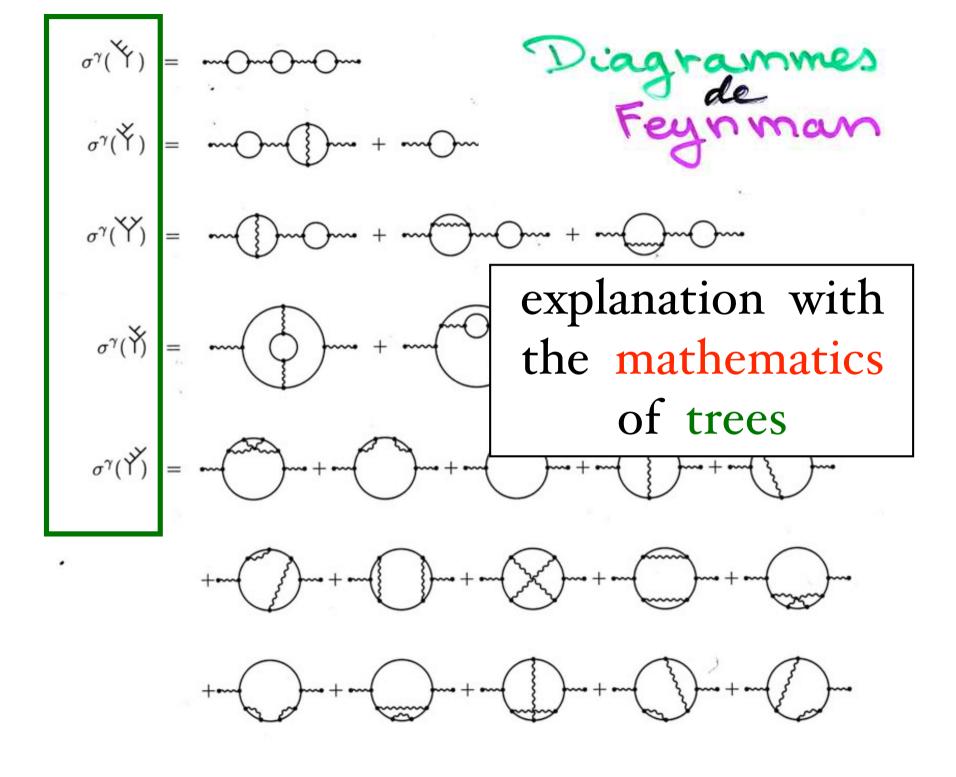
interactions between particles, photons

infinite sums of infinite quantities ?!?

deleting the double infinite ...

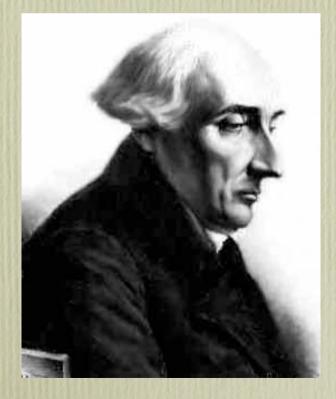
quantum renormalization

recipe for cooking



Euclide mathematics, many figures until Newton after, elimination of figures

Lagrange, treatise on mechanics: not a single figure equations, identities, pure abstraction



Joseph-Louis Lagrange 1736 - 1813

AVERTISSEMENT

DE LA DEUXIÈME ÉDITION.

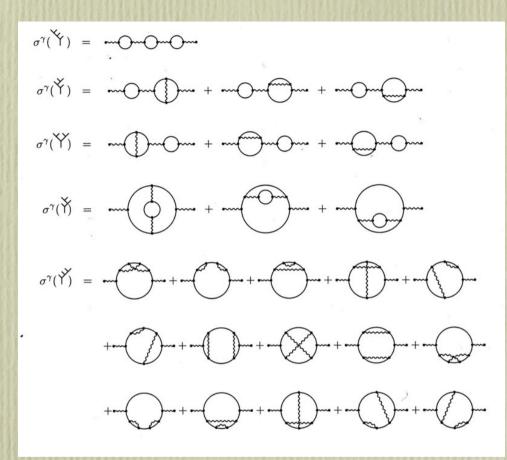
On a déjà plusieurs Traités de Mécanique, mais le plan de celui-ci est entièrement neuf. Je me suis proposé de réduire la théoric de cette Science, et l'art de résoudre les problèmes qui s'y rapportent, à des formules générales, dont le simple développement donne toutes les équations nécessaires pour la solution de chaque problème.

Cet Ouvrage aura d'ailleurs une autre utilité : il réunira et présentera sous un même point de vue les différents principes trouvés jusqu'ici pour faciliter la solution des questions de Mécanique, en montrera la liaison et la dépendance mutuelle, et mettra à portée de juger de leur justesse et de leur étendue.

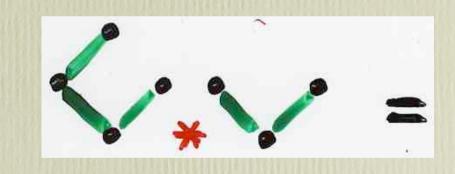
Je le divise en deux Parties : la Statique ou la Théorie de l'Équilibre, et la Dynamique ou la Théorie du Mouvement; et, dans chacune de ces Parties, je traite séparément des corps solides et des fluides.

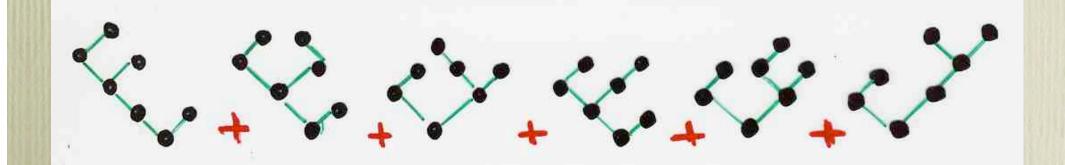
On ne trouvera point de Figures dans cet Ouvrage. Les méthodes que j'y expose ne demandent ni constructions, ni raisonnements géométriques ou mécaniques, mais seulement des opérations algébriques, assujetties à une marche régulière et uniforme. Ceux qui aiment l'Analyse verront avec plaisir la Mécanique en devenir une nouvelle branche, et me sauront gré d'en avoir étendu ainsi le domaine.

today, apparition of «figures», but on another level



product of two binary trees

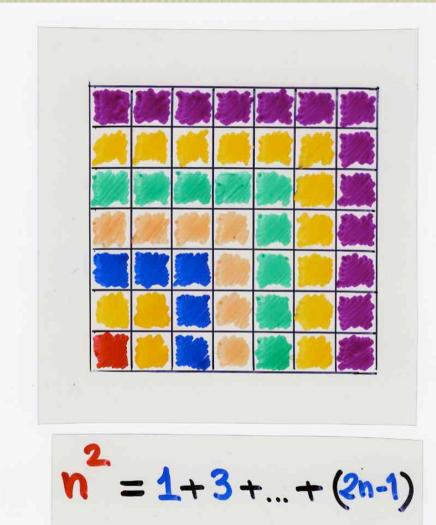




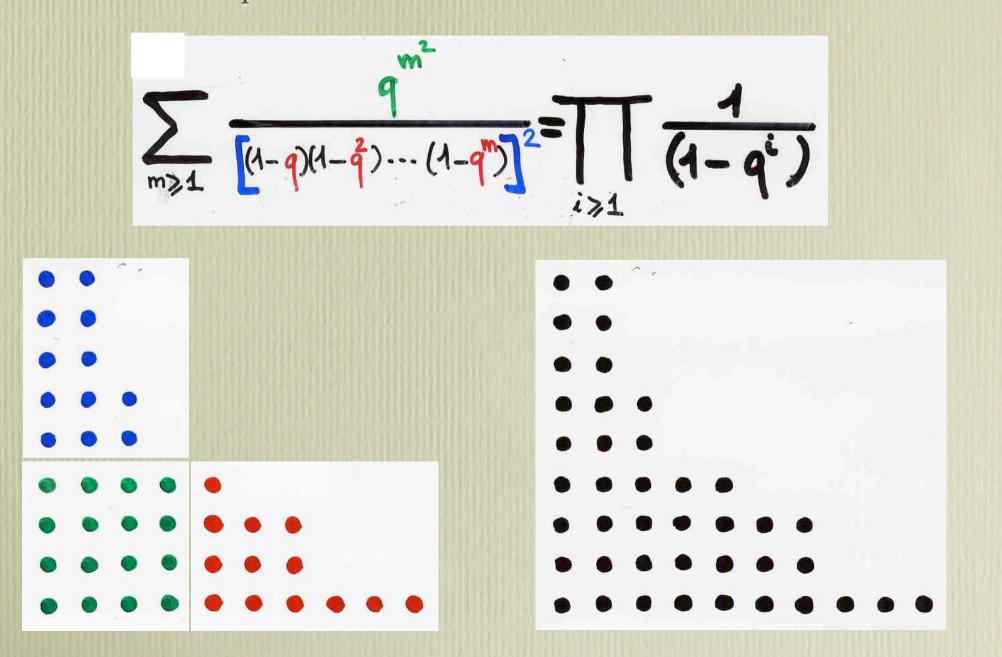
proofs with «figures»

Combinatorial proofs

«combinatorial proof» of some identities with bijections, correspondences combinatorial interpretations



«combinatorial proof» of some identities with bijections, correspondences combinatorial interpretations



Rogers - Ramanyjan identities

$$R_{I} = \sum_{n \ge 0} \frac{q^{n^{2}}}{(1-q)(1-q^{2})\cdots(1-q^{n})} = \prod_{\substack{i=1, i \\ mod \le}} \frac{1}{(1-q^{i})}$$

 $R_{I} = \sum_{n \ge 0} \frac{q^{n^{2}+n}}{(1-q)(1-q^{2})\cdots(1-q^{n})} = \prod_{\substack{i=1, i \\ mod \le}} \frac{1}{(1-q^{i})}$
 $mod \le 1$

Srinivasan Ramanujan (1887-1920)

"La fraction continue Ramanujan 10 +n n>o **^**) nzo

$$R(q) = \prod_{n \geq 0} \frac{(1-q^{n+1})(1-q^{n+4})}{(1-q^{n+2})(1-q^{n+2})} = \frac{R_{I}}{R_{I}}$$

$$R(q) = \prod_{n \geq 0} \frac{(A - q^{n+1})(A - q^{n+4})}{(A - q^{n+3})(A - q^{n+4})} = \frac{R_{II}}{R_{II}}$$
$$t = -q \left[R(q) \right]^{S}$$

$$R(q) = \prod_{n \geq 0} \frac{(1-q^{5n+1})(1-q^{5n+4})}{(1-q^{5n+3})(1-q^{5n+2})} = \frac{R_{II}}{R_{II}}$$

$$t = -q \left[R(q) \right]^{5}$$

$$\gamma(q) = \prod_{n \geq 0} \frac{(1-q^{6n+2})(1-q^{6n+3})^{2}(1-q^{6n+4})(1-q^{5n+1})^{2}(1-q^{5n+3})^{2}}{(1-q^{6n+2})(1-q^{6n+2})(1-q^{6n+2})^{2}(1-q^{5n+3})^{3}}$$

$$R(q) = \prod_{n \geq 0} \frac{(4-q^{n+1})(4-q^{n+4})}{(4-q^{n+4})(4-q^{n+4})} = \frac{R_{II}}{R_{II}}$$

$$t = -q \left[R(q) \right]^{S}$$

$$\gamma(q) = \prod_{n \geq 0} \frac{(1-q^{n+2})(1-q^{n+3})^{2}(1-q^{n+4})(1-q^{n+1})^{2}(1-q^{n+3})^{2}}{(1-q^{n+2})(1-q^{n+2})(1-q^{n+2})^{2}(1-q^{n+3})^{2}}$$

$$Z(t) = \gamma(q(t))$$

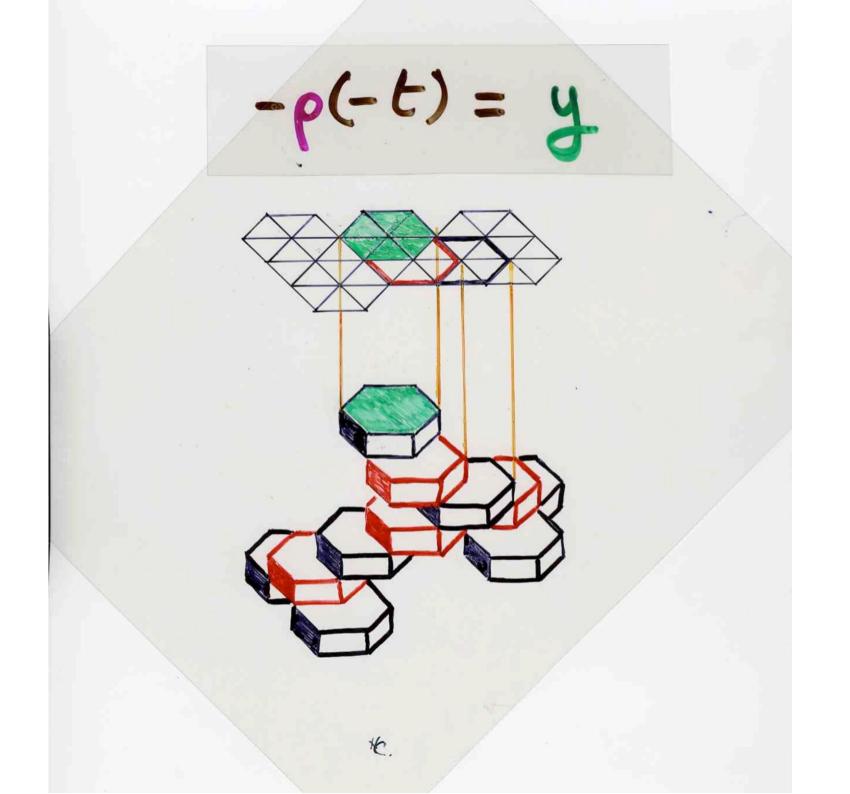
y (1+14t+97t+415t+1180t+2321t+3247t+3300t+2475t+1375t+1375t+143t+18t)+

y (1+17t+83t+601 +1647t+460st+7809t+710t+124t-608t-460t-92t- 36t-2 +

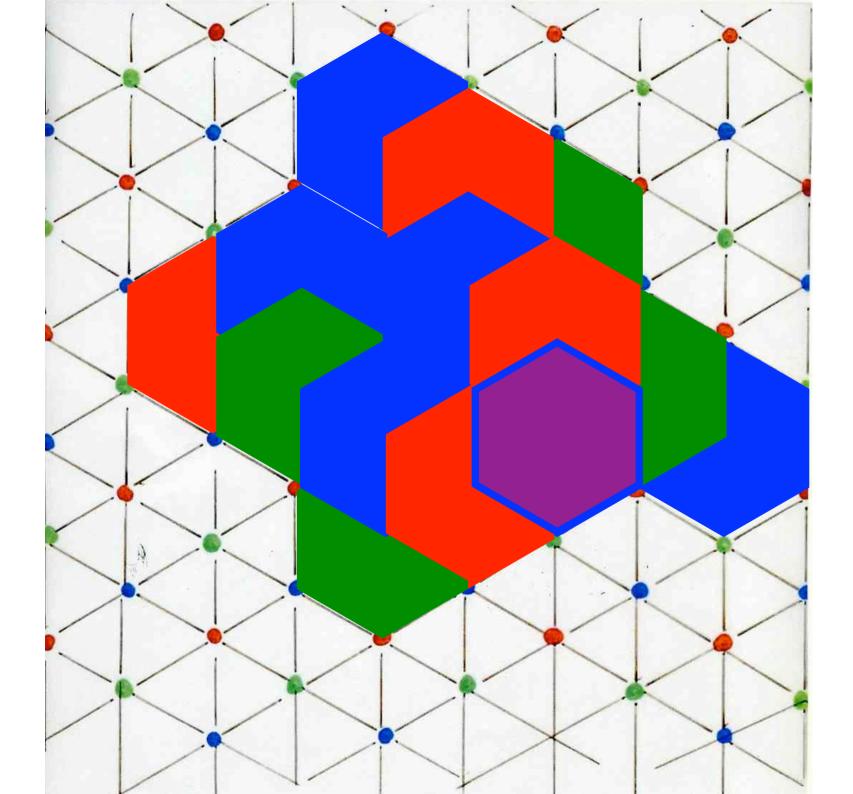
\$ (3+50t+381++1715++5040++10130++14062++13002++6930++715+-1595+-988+-198++) +

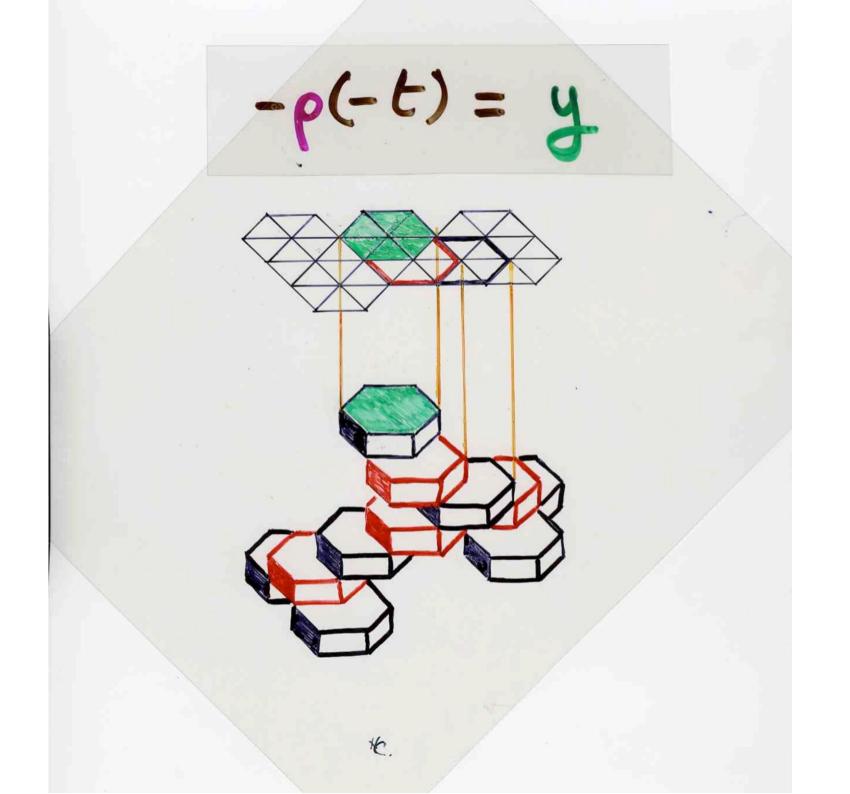
4 (1+17E+131E+595E+1765E+3574E+4939E+4356E+1815E-605E-1210E-616E-126E)

 $(t_{+11}t_{+}^{2}55t_{+165}t_{+}^{33}0t_{+}^{5}462t_{+}^{6}462t_{+}^{7}30t_{+165}t_{+55}t_{+11}^{10}t_{+}^{11}t_{+}^{12})$



The idea of heaps of pieces

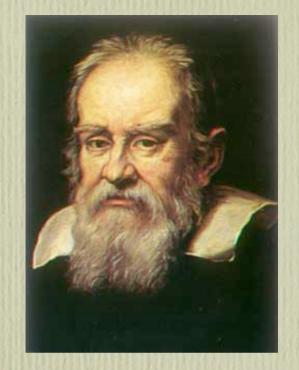


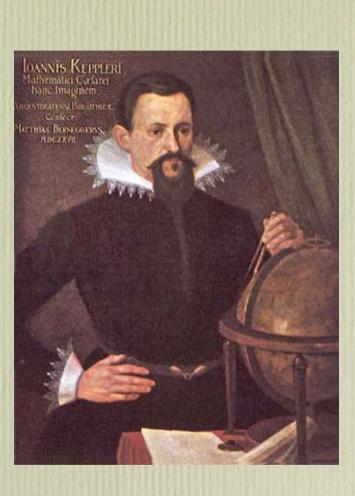


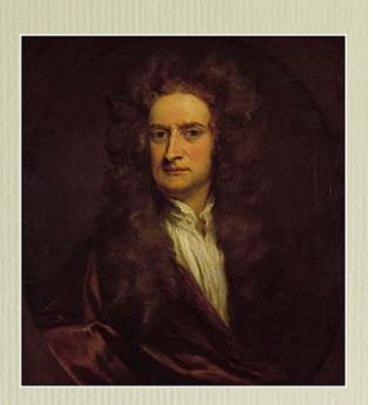
Combinatorial Physics

The infinitely large

Trees in the stars?

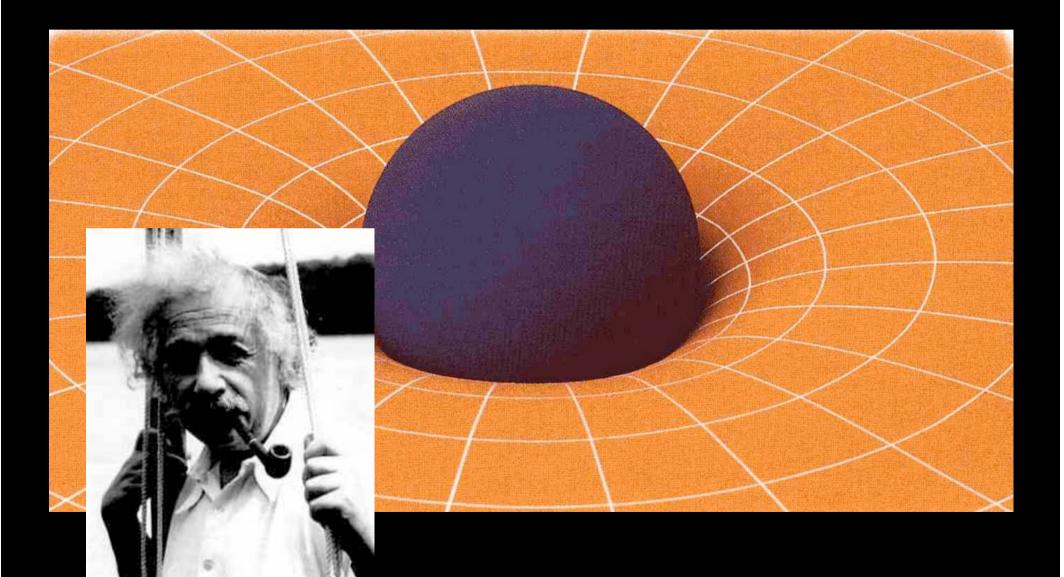






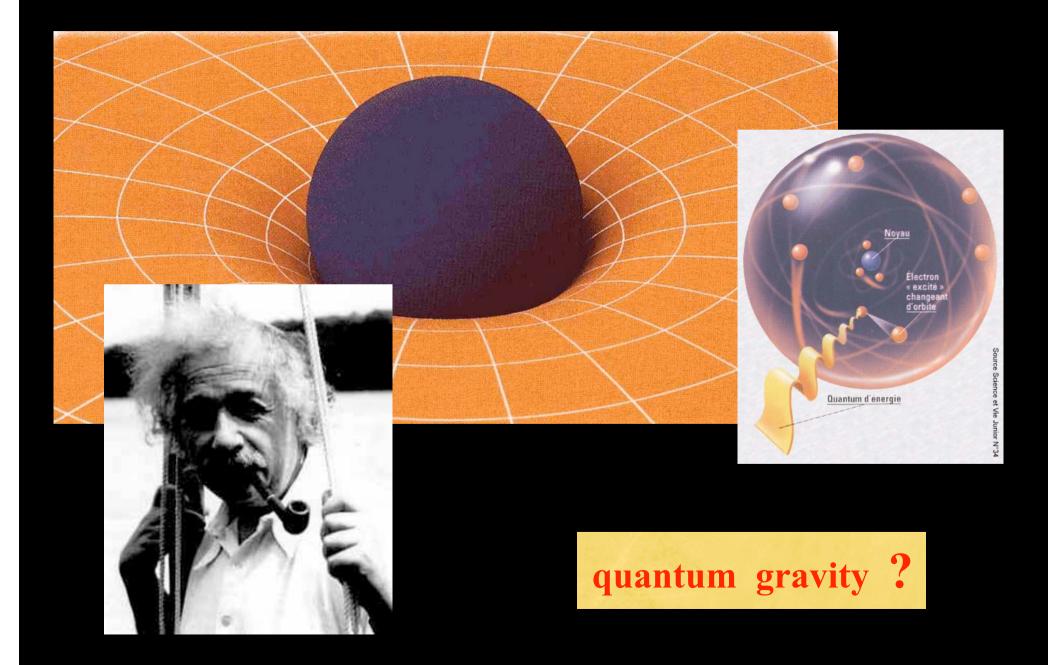
classical geometry and mechanics Galileo, Kepler, Newton,...

general relativity



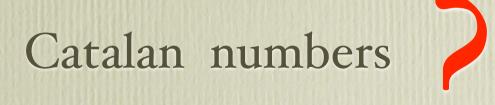
general relativity

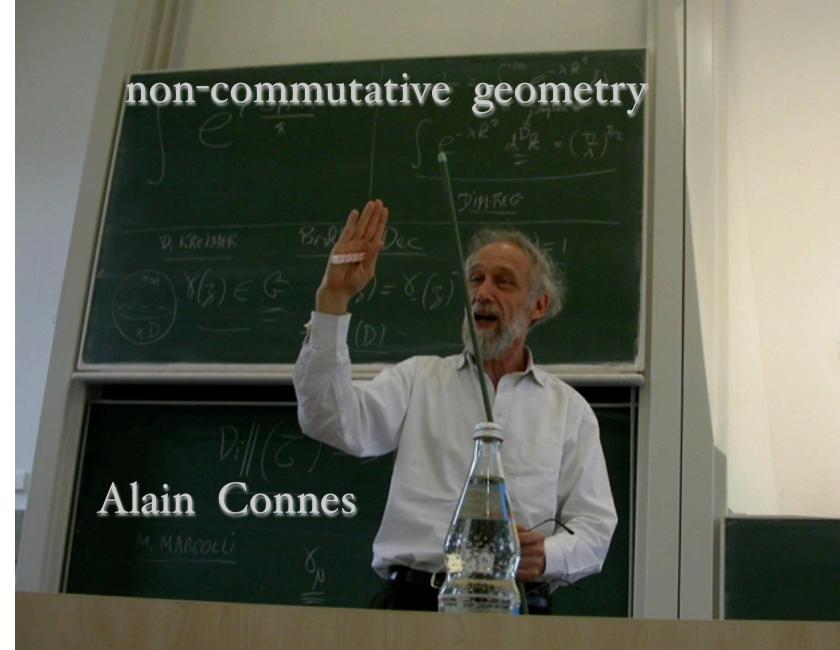
quantum mechanics



strings theory

particle as a violin chord ... ? each frequency corresponds to a particle.... ?





Universal Singular Fran

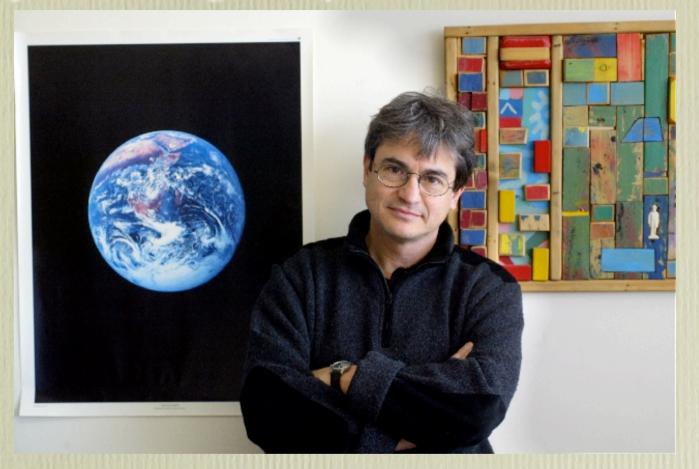
 $\gamma_U(z,v) = \mathrm{Te}^{-rac{1}{z}\int_0^v u^\mathrm{Y}(e)rac{\mathrm{d}v}{u}}$

$$\gamma_U(-z,v) = \sum_{n \ge 0} \sum_{k_j > 0} \frac{e(-k_1)e(-k_2)\cdots e(-k_n)}{k_1(k_1+k_2)\cdots(k_1+k_2+\cdots+k_n)}$$

Same coefficients as

Local Index Formula in NC

loop quantum gravity

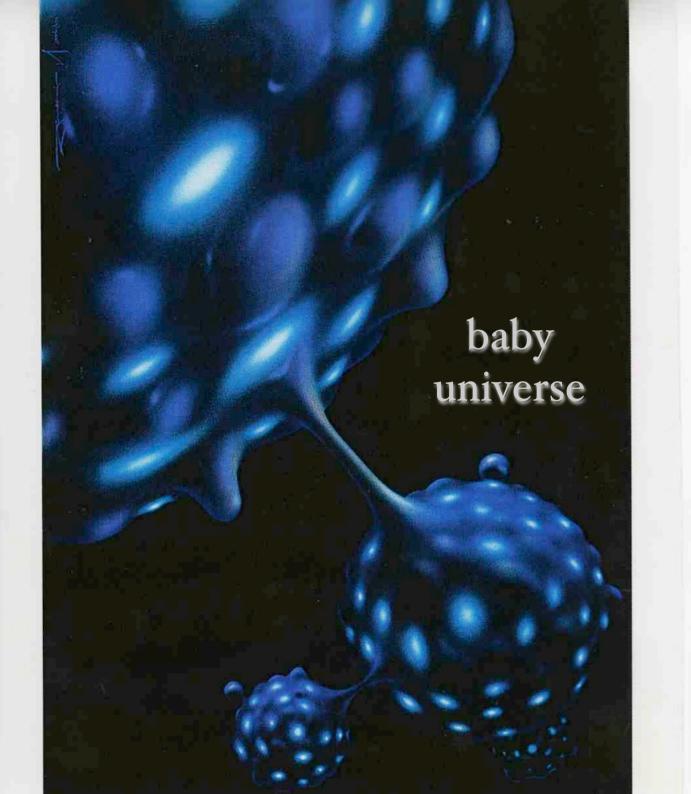


Carlo Rovelli

May be time does not exists ?

Drawing S. Numazawa

Ciel & Espace



quantum gravity

causal dynamical triangulations

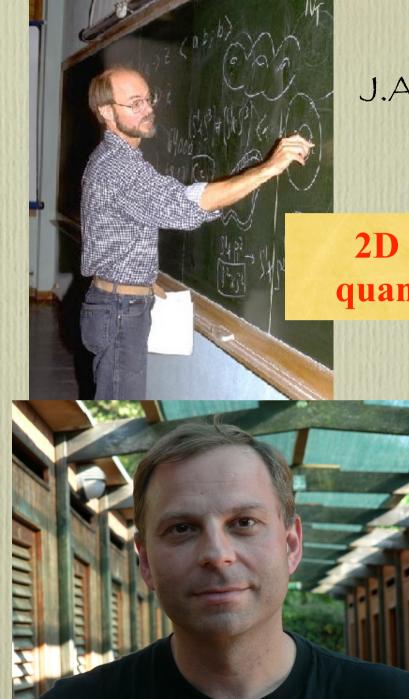
Xavier, you should have a look at these papers:

Deepak Dhar TIFR Bombay

J. Ambjørn, R. Loll, "Non-perturbative Lonentzian quantum gravity and topology change", Nucl. Phys. B536 (1998) 407-434 anXiv: hep-th/ 9805108

P. Di Francesco, E. Guilter, C. Kristjansen, Integrable 2D Grentzian gravity and random walks", Nucl. Phys. B 567 (2000) 515-553 aXiv: hep-th/9907084

gravitation quantique



P. Di Francesco

J.Ambjørn

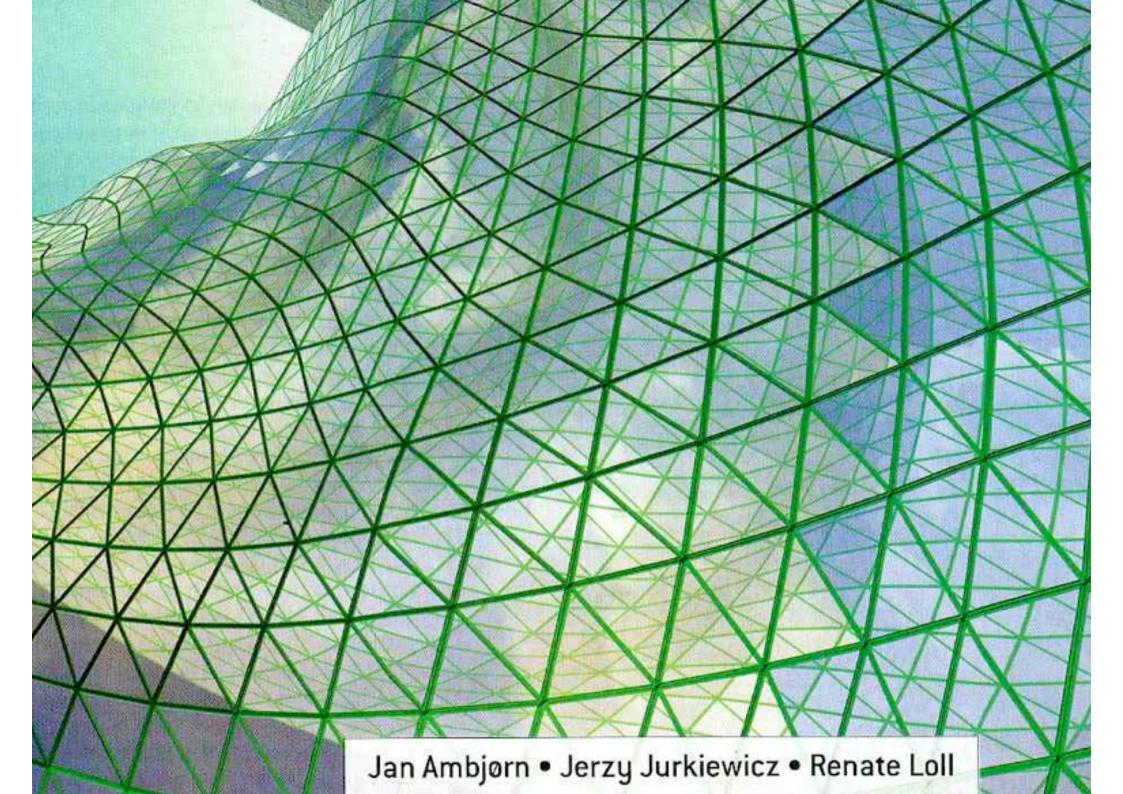
2D Lorentzian quantum gravity

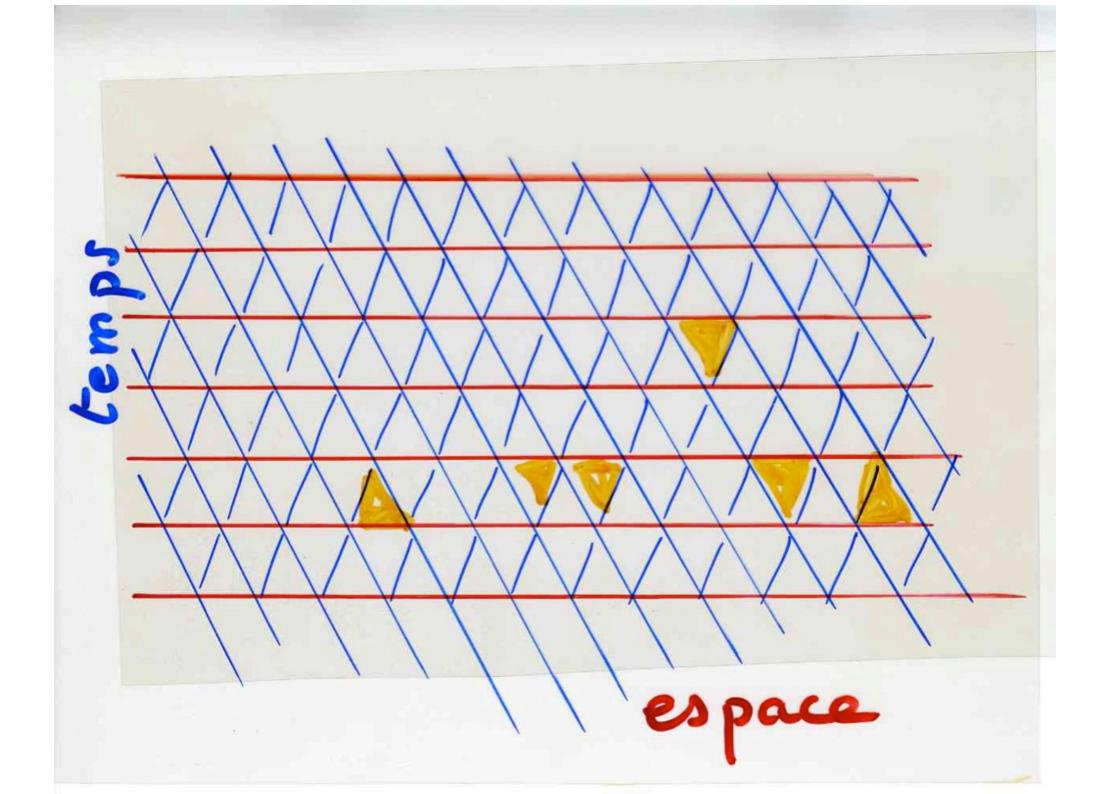


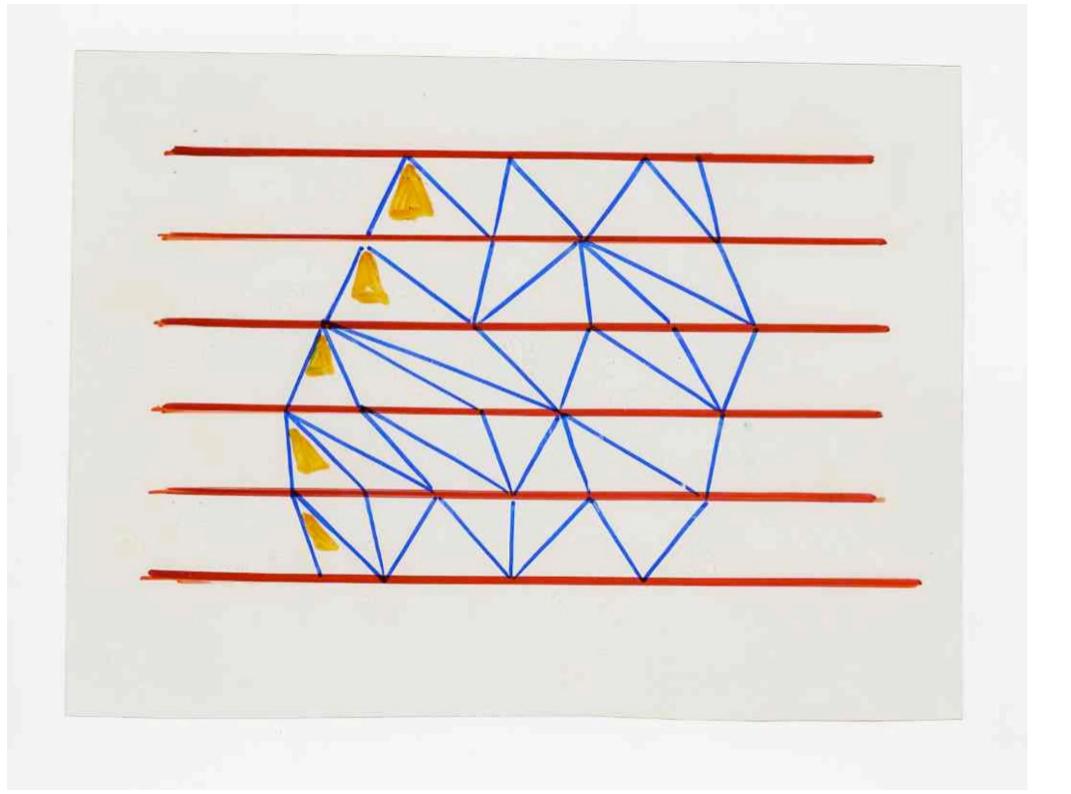
R. Loll

E.Guitter

C. Kristjansen

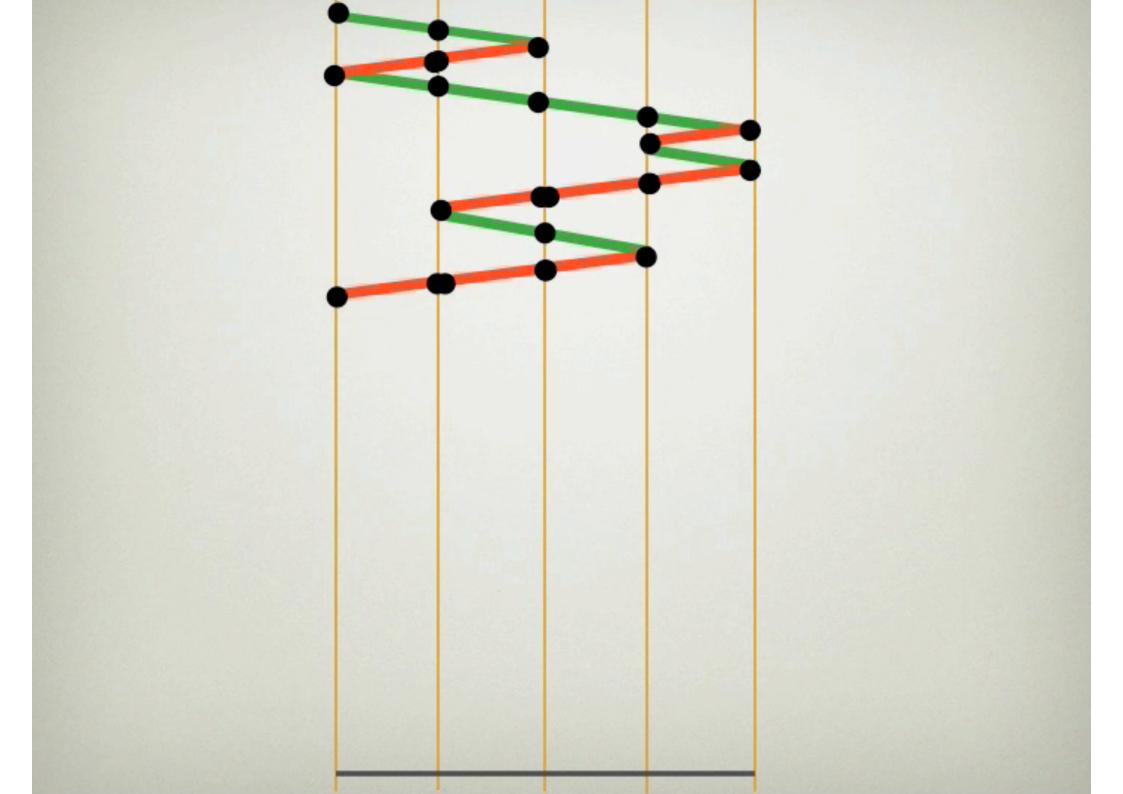




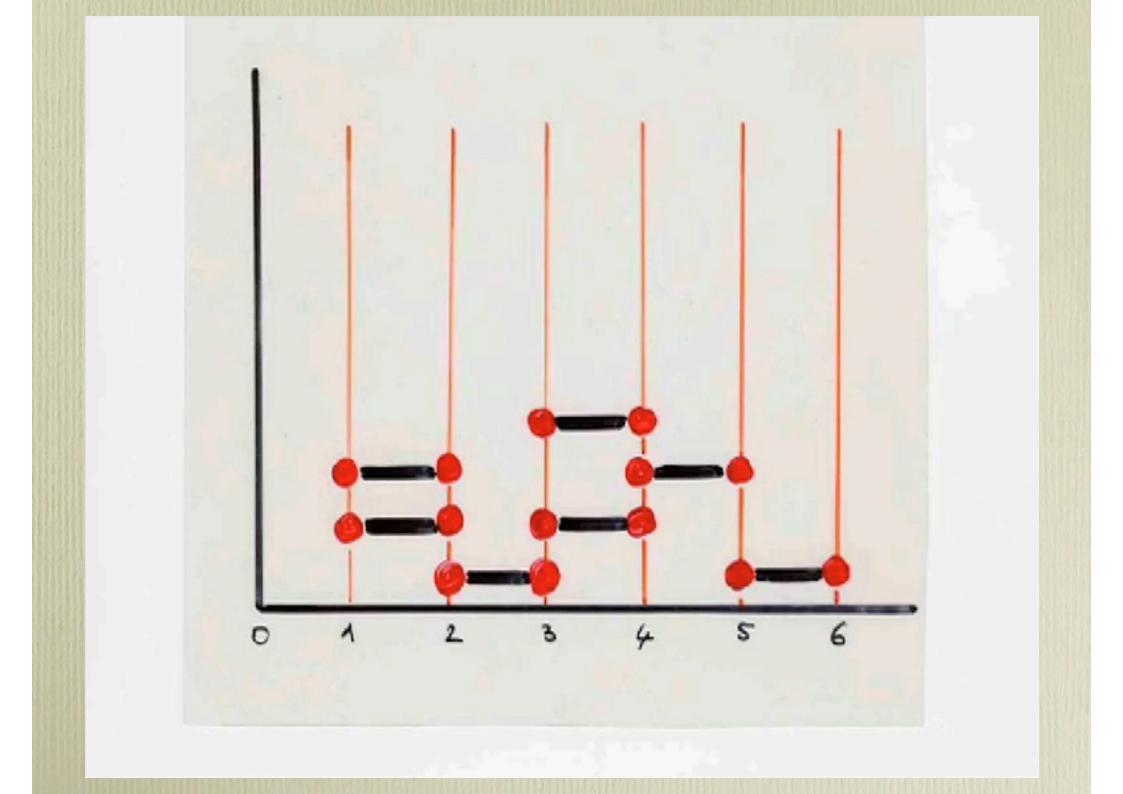


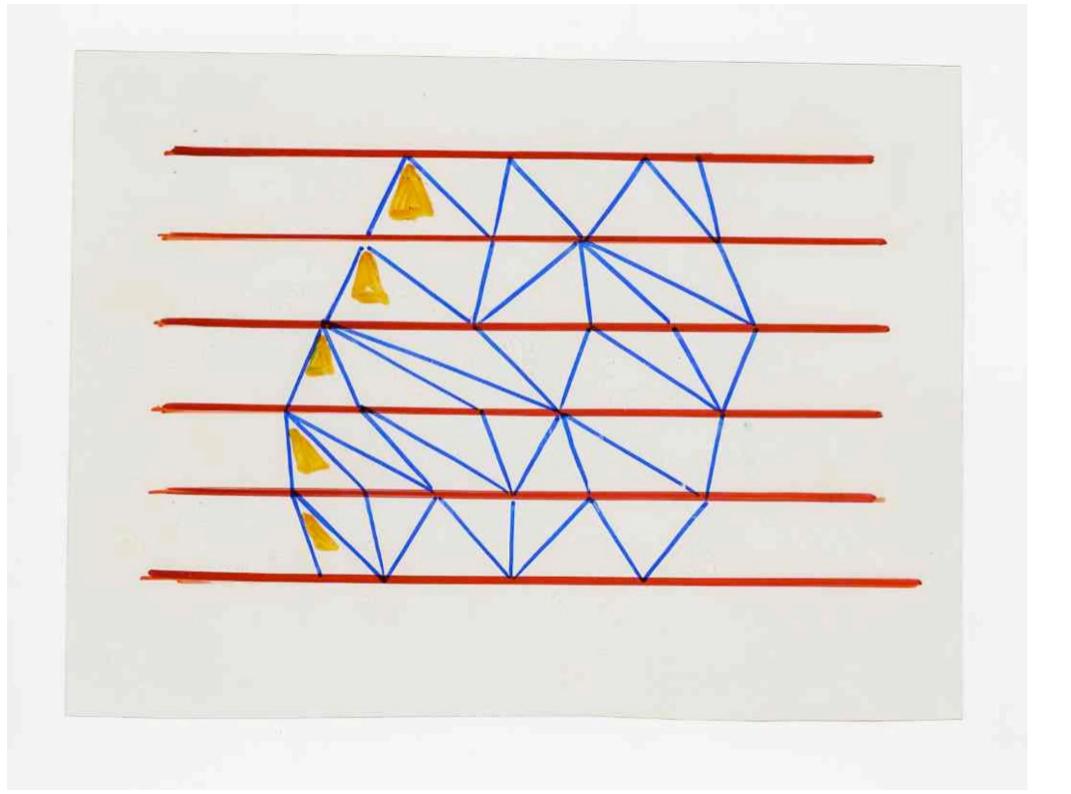
Catalan number $C_n = \frac{1}{(n+1)} \binom{2n}{n}$

from Dyck paths to heaps of dímers



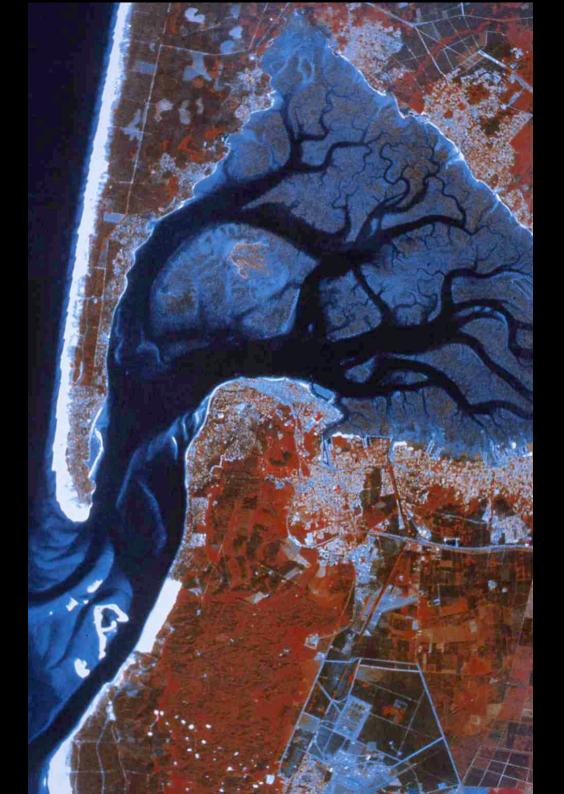
From heaps of dimers to Lorentzian triangulations



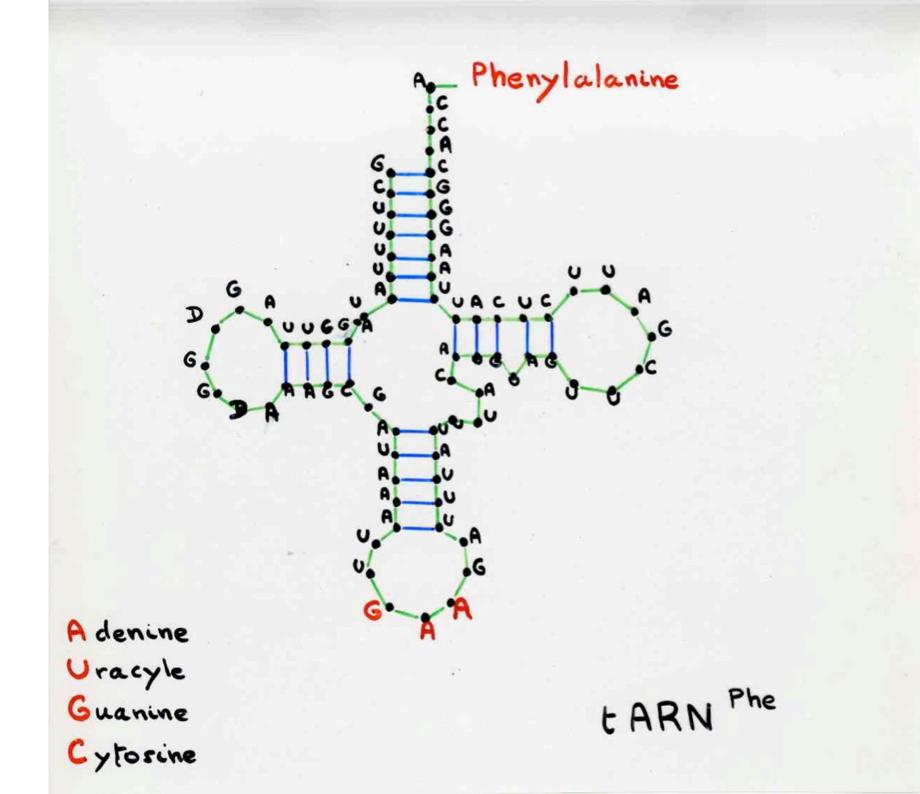


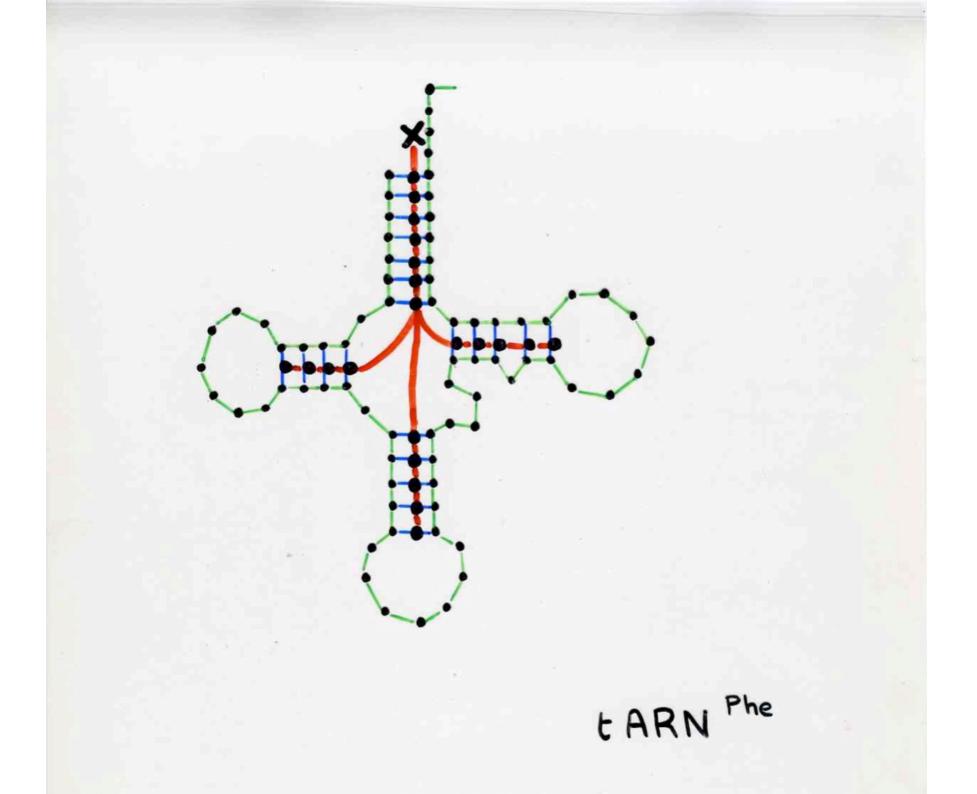
metamorphosis:

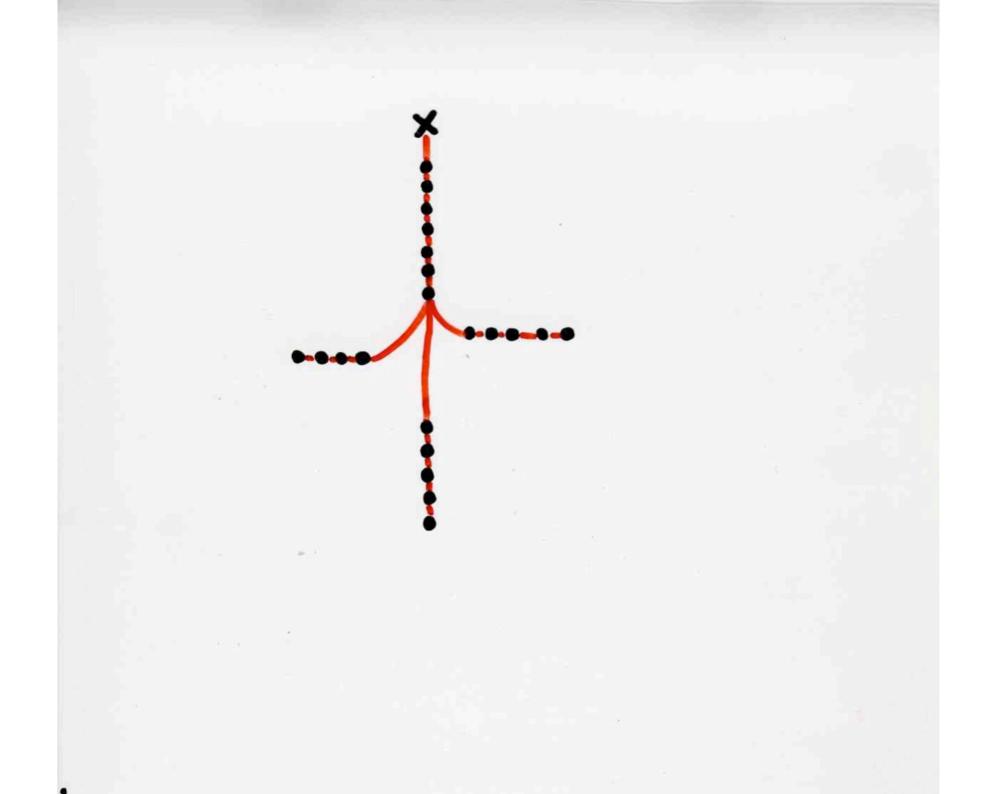
Euler triangulations binary trees Dyck paths heaps of dimers Lorentzian triangulations

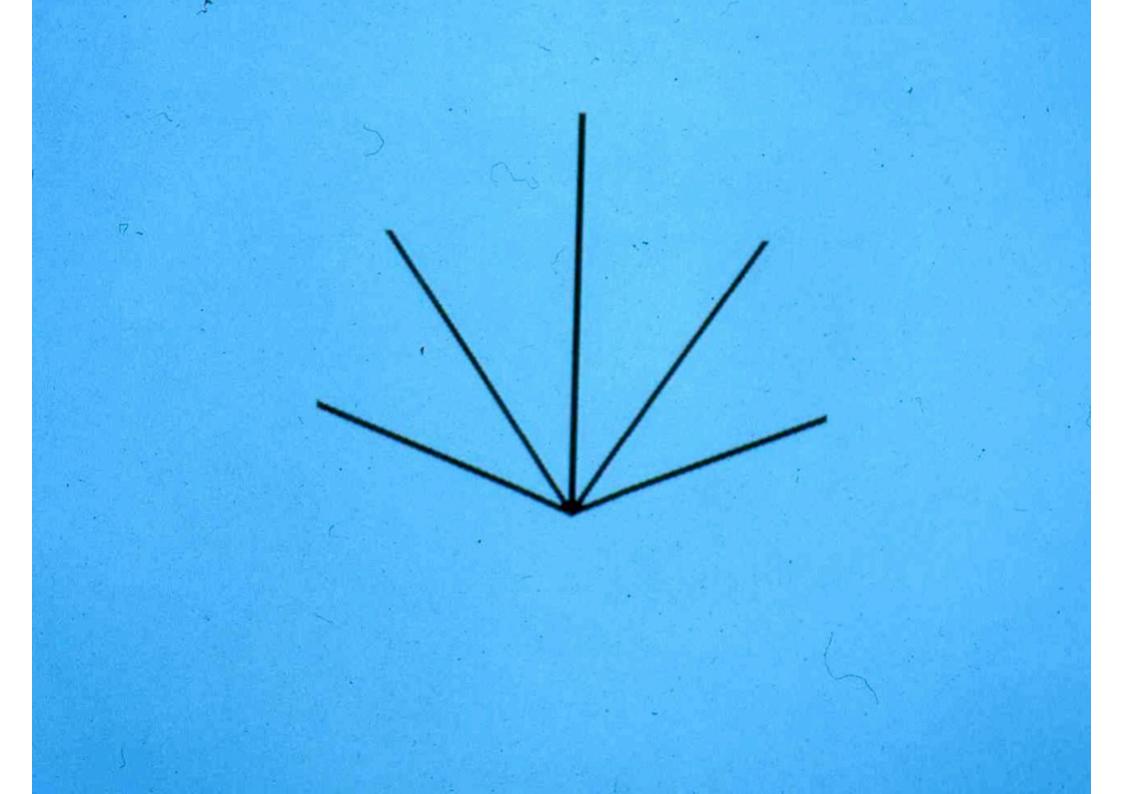


Trees everywhere









Il y a des arbres dans les étoiles, des arbres dans les grains de lumière.

There are trees in the stars trees in the particles of lights.

Les théories mathématiques s'interpellent, s'entrecroisent, renaissent, se fondent entre elles.

Mathematical theories call each other, intercross, are born again, merge in themselves.

> Les grands Maîtres se parlent à travers les siècles dans le jardin merveilleux des Mathématiques.

The great Masters talk each other through centuries in the wonderful garden of mathematics.

The end

thank you everyone

space-time text: Marcia Pig Lagos

violins: Gérard H.E. Duchamp Mariette Freudentheil

Association Cont'Science

realisation: Xavier Viennot

Many thanks to:

Space-Time text english traduction: Peter Scharf (University Paris Diderot

> subtitles and video CDEEP team Center for Distance Engineering Education Programme IIT Bombay, Powai, Mumbai, India

videos: atelier audiovisuel Université Bordeaux 1 Yves Descubes, Franck Marmisse

video technical help: Christian Faurens, SCRIME, Université Bordeaux 1 France

Photo Gravitational Lens Galaxy cluster 0024+1654 credit: W.N.Colley, E.Turner (Princeton University), J.A. Tyson (Bell Labs) and NASA copyright: AURA Hubble Space Telescopoe Public Picture

