Physique combinatoire

 et algèbres quadratiques
"L'Ansatz cellulaire"

Cours 1 (suite du colloquium)

7 Novembre 2011 Nice

Xavier Viennot
LaBRI, CNRS, Bordeaux

An introduction to RSK

G. de B. Robinson, 1938
C. Schensted, 1961

$\sigma=\left(\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 1 & 6 & 10 & 2 & 5 & 8 & 4 & 9 & 7\end{array}\right)$

The Robinson-Schensted correspondence (RSK) between permutations and pair of (standard) Young tableaux with the same shape

RSK with Schensted's insertions

1	2	3	4	5	6	7	8	9	10
3	1	6	10	2	5	8	4	9	7

1	2	3	4	5	6	7	8	9	10
3	1	6	10	2	5	8	4	9	7

1	2	3	4	5	6	7	8	9	10
3	1	6	10	2	5	8	4	9	7

1	2	3	4	5	6	7	8	9	10
3	1	6	10	2	5	8	4	9	7

1	2	3	4	5	6	7	8	9	10
3	1	6	10	2	5	8	4	9	7

1	2	3	4	5	6	7	8	9	10
3	1	6	10	2	5	8	4	9	7

1	2	3	4	5	6	7	8	9	10
3	1	6	10	2	5	8	4	9	7

1	2	3	4	5	6	7	8	9	10
3	1	6	10	2	5	8	4	9	7

1	2	3	4	5	6	7	8	9	10
3	1	6	10	2	5	8	4	9	7

2	5				
2	5				
1	3	4			

3	6				
1	2	10			

1	2	3	4	5	6	7	8	9	10
3	1	6	10	2	5	8	4	9	7

1	2	3	4	5	6	7	8	9	10
3	1	6	10	2	5	8	4	9	7

1	2	3	4	5	6	7	8	9	10
3	1	6	10	2	5	8	4	9	7

1	2	3	4	5	6	7	8	9	10
3	1	6	10	2	5	8	4	9	7

1	2	3	4	5	6	7	8	9	10
3	1	6	10	2	5	8	4	9	7

1	2	3	4	5	6	7	8	9	10
3	1	6	10	2	5	8	4	9	7

1	2	3	4	5	6	7	8	9	10
3	1	6	10	2	5	8	4	9	7

1	2	3	4	5	6	7	8	9	10
3	1	6	10	2	5	8	4	9	7

1	2	3	4	5	6	7	8	9	10
3	1	6	10	2	5	8	4	9	7

8				
2	5	6		
1	3	4	7	9

6					
$\overline{3}$	5	10			
1	2	4	8	9	

1	2	3	4	5	6	7	8	9	10
3	1	6	10	2	5	8	4	9	7

8				
2	5	6		
1	3	4	7	9

6					
3	5	10			
1	2	4	8		
	2		7		

1	2	3	4	5	6	7	8	9	10
3	1	6	10	2	5	8	4	9	7

8				
2	5	6		
1	3	4	7	9

6					
3	5	10			
1	2	4	7		
1	8		8		

1	2	3	4	5	6	7	8	9	10
3	1	6	10	2	5	8	4	9	7

8				
2	5	6		
1	3	6		
1	3	4	7	9

1	2	3	4	5	6	7	8	9	10
3	1	6	10	2	5	8	4	9	7

1	2	3	4	5	6	7	8	9	10
3	1	6	10	2	5	8	4	9	7

$$
\begin{aligned}
& \sigma \longleftrightarrow(P, Q) \\
& \sigma^{-1} \longleftrightarrow(Q, P)
\end{aligned}
$$

Donald Knuth
(1972)
"The unusual nature of these coincidences might lead us to suspect that some sort of witheraft is operating behind the scenes"

A geometric version of RSK with "light" and "shadow lines"

$$
\text { xgv, } 1976
$$

des nouveaux points
les rouges

Répétons sur les points rouges la construction des bords d^{\prime} ombres.

$$
\begin{aligned}
& \sigma \longleftrightarrow(P, Q) \\
& \sigma^{-1} \longleftrightarrow(Q, P)
\end{aligned}
$$

proof of the equivalence insertions ~-- geometric constrution

representation of the operators U, D

Sergey Fomin
(with C. K.)

Operators U and D

adding or deleting a cell in a Ferrers diagram

Young lattice

Young lattice

Fomin, stanley

田 $=$ 国 $+\boxplus$ 。

Heisenberg commutation relation

$$
\mathrm{UD}=\mathrm{DU}+\mathrm{I}
$$

田 $\mathrm{U}=\mathrm{m}^{+}+$田＋母
田 D＝田＋\boxplus

田 DU＝国＋田＋+ 田＋田

田 DU＝国＋田＋＋+ 田＋田
田（UD－DU）$=$ 田
$\mathrm{UD}=\mathrm{DU}+\mathrm{I}$

The cellular Ansatz

 second part:guided construction
of a bijection
(from the representation of U and D)
combinatorial "representation" of the commutation relation $\mathrm{UD}=\mathrm{DU}+\mathrm{I}$

$$
\mathrm{UD}=\mathrm{DU}+\mathrm{I}
$$

Commutation diagrams bijection

$$
\left.\left.\right|_{\alpha-\gamma} ^{\beta=\beta-\delta}\right|_{\gamma} ^{\text {action }}
$$

$\alpha, \beta, \gamma, \delta$ Fencers
label diagrams

$$
\begin{aligned}
& U D=D U+I_{v} I_{n}
\end{aligned}
$$

$$
\begin{aligned}
& U D=D U+I_{v} I_{n}
\end{aligned}
$$

$\beta \neq \gamma$

$$
\delta=\beta \cup \gamma
$$

$$
\begin{aligned}
& U D=D U+I_{v} I_{h}
\end{aligned}
$$

$$
\begin{aligned}
& U D=D U+I_{v} I_{n}
\end{aligned}
$$

$$
\begin{aligned}
& 0
\end{aligned}
$$

$$
\left\{\begin{array}{l}
U D=D U+I_{v} I_{h} \\
U I_{v}=I_{v} U \\
I_{h} D=D I_{h} \\
I_{h} I_{v}=I_{v} I_{h}
\end{array}\right.
$$

$\beta \neq \gamma$
$\beta=\gamma$

$\delta=\beta \cup \gamma$

$\alpha=\beta$
$\delta=\gamma=\beta+(i)$

$$
\begin{aligned}
& \beta=\gamma=\alpha+(i) \\
& \delta=\beta+(i+l)
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=\gamma \\
& \delta=\beta=\alpha+(i)
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=\beta=\gamma \\
& \delta=\alpha+(1)
\end{aligned}
$$

$\delta=\alpha=\beta=\gamma$

$\beta \neq \gamma$
$\beta=\gamma$

$\delta=\beta \cup \gamma$

$\alpha=\beta$
$\delta=\gamma=\beta+(i)$

$$
\begin{aligned}
& \beta=\gamma=\alpha+(i) \\
& \delta=\beta+(i+l)
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=\gamma \\
& \delta=\beta=\alpha+(i)
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=\beta=\gamma \\
& \delta=\alpha+(1)
\end{aligned}
$$

$\delta=\alpha=\beta=\gamma$
$\beta \neq \gamma$

$$
\delta=\beta \cup \gamma
$$

$\beta=\gamma$
$\alpha \neq \beta$

$$
\begin{aligned}
& \beta=\gamma=\alpha+(i) \\
& \delta=\beta+(i+1)
\end{aligned}
$$

$$
\delta=\beta+(i+1)
$$

$$
\alpha=\beta=\gamma
$$

$$
\delta=\alpha+(1)
$$

$$
\alpha=\beta=\gamma
$$

$$
\delta=\alpha=\beta=\gamma
$$

RSK with
Fomín's
"local rules"

$$
U D=q D U+1
$$

Sergey Fomin
(with C. K.)

local RSK and geometric RSK

(the geometric construction with "light" and "shadow" for RSK leads to a simple proof of the fact that RSK and the "local rules" give the same bijection)

$$
\begin{array}{lr}
& \beta=\gamma \\
i=j & i+1
\end{array}
$$

$\beta=\alpha$
$\delta=\gamma=\alpha+(j)$
$i=j$
i+

$$
\begin{aligned}
& \beta=\gamma=\alpha+(i) \\
& \delta=\alpha+(i)+(i+1)
\end{aligned}
$$

$$
\begin{aligned}
& \gamma=\alpha \\
& \delta=\beta=\alpha+(i)
\end{aligned}
$$

$\beta=\gamma=\alpha$
$\delta=\alpha+(1)$

$\delta=\beta=\gamma=\alpha$

$$
\begin{aligned}
& \beta=\gamma=\alpha+(i) \\
& \delta=\alpha+(i)+(i+l)
\end{aligned}
$$

$$
\beta=\gamma=\alpha
$$

$$
\delta=\alpha+(I)
$$

$\beta=\alpha$
$\delta=\gamma=\alpha+(j)$

$$
\begin{aligned}
& \gamma=\alpha \\
& \delta=\beta=\alpha+(i)
\end{aligned}
$$

$$
\alpha=\beta=\gamma
$$

$$
\beta
$$

$\beta=\gamma=\alpha+(i)$
$\delta=\beta+(i+1)$

42153

$$
\begin{aligned}
& \xrightarrow{1} \boldsymbol{r}^{2} \boldsymbol{r}^{3} \boldsymbol{q}^{2}=
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{w}=12312
\end{aligned}
$$

Yamanuchi word

Sergey Fomin

- Schur operators and Knuth correspondences, Journal of Combinatorial Theory, Ser.A 72
(1995), 277-292.
- Duality of graded graphs, Journal of Algebraic Combinatorics $\mathbf{3}$ (1994), 357-404.
- Schensted algorithms for dual graded graphs, Journal of Algebraic Combinatorics 4 (1995), 5-45.
- Dual graphs and Schensted correspondences, Series formelles et combinatoire algebrique, P.Leroux and C.Reutenauer, Ed., Montreal, LACIM, UQAM, 1992, 221-236.
- Finite posets and Ferrers shapes (with T.Britz, 41 pages)

Advances in Mathematics 158 (2000), 86-127.
A survey on the Greene-Kleitman correspondence; many proofs are new.

- Knuth equivalence, jeu de taquin, and the Littlewood-Richardson rule (30 pages)

Appendix 1 to Chapter 7 in: R.P.Stanley, Enumerative Combinatorics, vol.2,
Cambridge University Press, 1999.

Richard P. Stanley

- Differential posets, J.Amer. Math. Soc. 1 (1988), 919-961.

- Variations on differential posets, in Invariant Theory and Tableaux (D. Stanton, ed.),

The IMA Volumes in Mathematics and Its Applications, vol. 19, Springer-Verlag, New York, 1990, pp. 145-165.

Xavier Gérard Viennot

- Une forme géométrique de la correspondance de Robinson-Schensted, in "Combinatoire et Représentation du groupe symétrique" (D. Foata ed.) Lecture Notes in Mathematics n ${ }^{\circ}$ 579, pp 29-68, 1976

Marc van Leeuwen

- The Robinson-Schensted and Schützenberger algorithms, an elementary approach
(a 272 Kb dvi file) Electronic Journal of Combinatorics, Foata Festschrift, Vol 3(no.2), R15 (1996)

Guoniu Han

http://math.u-strasbg.fr/~guoniu/software/rsk/index.html Autour de la correspondance de Robinson-Schensted
Exposé au SLC 52 et LascouxFest, 29/03/2004

